Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Материалка.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
5.51 Mб
Скачать
  1. Поверхностная закалка при индукционном нагреве. Ее назначение, применяемые стали. Достоинства и недостатки метода.

При поверхностной закалке ТВЧ для нагрева поверхности детали ее помещают в индуктор, через который пропускают токи высокой частоты. За счет создаваемого переменного магнитного поля в поверхностном слое металла возникают вихревые токи, что и вызывает прогрев на определенную глубину. Толщина закаленного слоя зависит от частоты тока, обычно она составляет от 1 до 4 мм. Этот способ обеспечивает более высокие скорости нагрева и охлаждения, чем объемная печная закалка. Превращение перлита в аустенит происходит при более высоких температурах (880…980°C). Охлаждение детали производится путем распыления воды из форсунок. После закалки ТВЧ проводят низкий отпуск при температуре 160…200°C или самоотпуск. Закалке ТВЧ подвергают среднеуглеродистые стали (0,4…0,5%С). После закалки и низкого отпуска на поверхности образуется структура мартенсита отпуска с твердостью до 60 HRC, что на 3…5 единиц больше, чем при печном нагреве. Сердцевина остается незакаленной, для обеспечения ее вязкости проводят предварительную термообработку: улучшение (структура - сорбит зернистый) или нормализацию (структура сорбит пластинчатый+феррит). Закалка ТВЧ применяется для таких деталей как коленчатые и распределительные валы, шаровые пальцы, шестерни, зубчатые колеса и др.

  1. Образцы стали 45 имеют твердость 15hrc и 58hrс. Какую термическую обработку прошли образцы? Какая получена структура.

Сталь 45 с твердостью 58 :ТО нормализация. Структура Спл+Ф

Сталь 45 с твердостью 15 ТО закалка+высокий отпуск Сотп

Билет №27

  1. Основные легирующие элементы, используемые в конструкционных сталях. Влияние легирующих элементов: на механические свойства сталей, прокаливаемость, диаграмму изотермического превращения аустенита, отпуск стали.

Н а механические свойства:

- ЛЭ, растворенные в Ф и А, повышают прочность. Обычно при упрочнении пластичность снижается. Ni увеличивая прочность, одновременно повышает пластичность, вязкость и снижает порог хладноломкости. - Дисперсные карбиды и интерметаллиды, выделяясь из ТВ растворов, препятствуют движению дислокаций, вызывая дисперсное упрочнение. - Фазы внедрения и бор, выделяясь по границам зёрен, препятствуют диффузии и сдерживают рост зёрен до 1100 град. - ЛЭ, растворенные в А, замедляют диффузионные процессы, повышая его устойчивость, снижают критическую скорость закалки и увеличивают прокаливаемость стали. Mo и W предупреждают обратимую отпускную хрупкость легированных сталей. - ЛЭ придают сталям особые физические свойства: коррозионную стойкость, жаропрочность, износостойкость.

На прокаливаемость: - ЛЭ, растворенные в А, смещая С-кривую вправо, повышают его устойчивость, критическая скорость снижается, прокаливамость увеличивается. Для повышения прокаливаемости добавляют хром, марганец, никель, молибден, вольфрам, малые добавки бора. ЛЭ, находящиеся в виде карбидов, нитридов ( V, Ti, Nb ), уменьшают устойчивость А, снижая прокаливаемость.

ЛЭ влияют на точки полиморфного превращения железа ( А3,А4 ), изменяя области существования Ф и А. Различают 2 группы ЛЭ: альфа- и гамма-стабилизаторы. К альфа-стабилизаторам относятся элементы с ОЦК-решёткой: Cr, Mo, W, V, Nb. Они повышают температуру А3 и понижают А4 расширяя область альфа-тв раствора. При концентрации альфа-стабилизатора больше Х сплавы Fe-ЛЭ не испытывают полиморфного превращения и имеют структуру легировнного Ф. К гамма-стабтлизаторам относятся элементы с ГЦК-решёткой: Mn, Ni, Cu. Они пожаниют температуру А3 и повышают А4, расширяя область гамма-тв раствора. Сплавы, с концентрацией гамма-стаилизатора больше Y имеют структуру легированного А.