Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Материалка.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
5.51 Mб
Скачать
  1. Закалка и отпуск стали. Назначение каждого процесса. Виды отпуска. Получаемые структура и свойства. Отпускная хрупкость и методы ее устранения.

Закалка – нагрев доэвтектоидной стали на 30..50°С выше АС3, заэвтектоидной - на 30..50°С выше АС1, выдержка и последующее охлаждение со скоростью выше критической (Рис. 38, 42). Цель закалки – получение структуры мартенсита.

Структуры сталей после закалки:

  • доэвтектоидных - М+АОСТ,

  • эвтектоидной - М+АОСТ,

  • заэвтектоидных – М+АОСТII.

Виды

отпуска

Температура,

°С

Структура

Свойства

Применение

Низкий

150…250

Мотп

HRC, σв

Инструмент, подшипники, детали после ХТО и ТВЧ

Средний

350…500

Тотп

σупр, σ-1

Рессоры, пружины

Высокий

500…680

Сотп

КС

Валы, оси, шатуны

Закалка, как правило, не является окончательной термообработкой, после нее следует отпуск. Отпуск стали Отпуск – нагрев закаленной стали до температур ниже АС1, выдержка и охлаждение. Цель отпуска – получение окончательной структуры и свойств стали. Отпуск основан на превращениях мартенсита при нагреве (см. п. 6.3), в результате которых происходит изменение структуры и свойств стали Различают три вида отпуска (табл.3). Окончательная термообработка, назначаемая изделию для придания требуемых свойств, состоит из закалки и последующего отпуска. Закалку с низким отпуском применяют для деталей машин и инструмента, от которых требуются высокая твердость и износостойкость. Закалку с последующим средним отпуском – для изделий с повышенными упругими свойствами. Закалку с высоким отпуском (улучшение) – для деталей, работающих при повышенных динамических (ударных) и циклических нагрузках.

Отпускная хрупкость

Существуют определенные температурные интервалы отпуска, в которых снижается ударная вязкость (Рис.44). Понижение ударной вязкости при температурах отпуска называется отпускной хрупкостью.

Отпускная хрупкость I рода (необратимая) наблюдается в температурном интервале среднего отпуска (250…400°С) у всех конструкционных сталей. Её связывают с неравномерным выделением карбидов из мартенсита по границам зёрен. Хрупкость I рода устраняется нагревом до температуры выше 400°С, снижающим, однако, твердость.

Отпускная хрупкость II рода (обратимая) проявляется при температуре 500…550°С в Cr-Ni- и Cr-Mn- улучшаемых сталях. Предполагаемая причина – скопление фосфора и элементов внедрения по границам зёрен при медленном охлаждении. Хрупкость II рода устраняется повторным отпуском с быстрым охлаждением. Для предупреждения обратимой хрупкости стали легируют молибденом (0,3%) или вольфрамом (до 1%).

  1. 2. Жаропрочность. Факторы, повышающие жаропрочность. Явление ползучести, характеристики ползучести. Жаропрочные стали, их состав, класс, структура, применяемая термообработка и ее цель.

Жаропрочные стали предназначены для работы под нагрузкой при высоких температурах в течение определенного времени.

При повышенных температурах в металлах развиваются процессы ползучести – нарастание деформации при постоянно действующем напряжении, что и приводит, в конечном счете, к разрушению деталей.

Жаропрочность – это способность металла сопротивляться ползучести.

Основными причинами разупрочнения сталей при высоких температурах являются:

  • развитие процессов рекристаллизации;

  • диффузионные процессы,

  • активное перемещение дислокаций,

  • скольжение границ зерен.

Повышение жаропрочности достигается:

  • легированием твердого раствора тугоплавкими металлами, такими как Cr, Mo, W, V, что обеспечивает повышение температуры рекристаллизации, замедление диффузионных процессов и твердорастворное упрочнение;

  • образованием в твердом растворе дисперсных частиц вторичных фаз (карбидов, нитридов, интерметаллидов), которые выделяются из пересыщенного твердого раствора в результате закалки и старения (отпуска), частицы тормозят движение дислокаций, обеспечивая дисперсионное упрочнение;

  • формированием крупнозернистой структуры, что уменьшает зернограничное скольжение. Для стабилизации границ зерен применяют легирование элементами, образующими устойчивые фазы, например, бором (до 0,01%).

Таким образом, жаропрочные стали являются, как правило, многокомпонентными высоколегированными сплавами. Они также должны обладать высокой жаростойкостью и коррозионной стойкостью.

Основные группы жаропрочных сталей

Стали перлитного класса

  • Котельные углеродистые стали 12К, 15К, 22К применяются для слабонагруженных деталей энергетических установок, их рабочие температуры не превышают 400°С, термообработка – нормализация.

  • Низколегированные стали 12Х1МФ, 25Х2М1Ф с содержанием карбидообразующих элементов (Cr, Mo, W и V) до 3%. Термообработка - закалка + высокий отпуск обеспечивает дисперсионное твердение за счет выделения карбидов молибдена и вольфрама. Применяются в паросиловых установках с рабочими температурами до 510…550°С.

Стали мартенситного (мартенситно-ферритного) класса:

  • Стали 15Х11МФБ, 18Х12ВМБФР содержат 8…13%Cr, а также W, Mo, V, Nb. После закалки и высокого отпуска формируется структура сорбита отпуска. Жаропрочность достигается за счет упрочнения твердого раствора, образования карбидных и интерметаллидных фаз. Применяются для деталей газовых турбин и паросиловых установок. Траб=580…600°С.

  • Сильхромы 40Х9C2 и 40Х10С2М применяют для изготовления выпускных клапанов двигателей. Траб.max=650°С.

Стали аустенитного класса по жаропрочности превосходят перлитные и мартенситные стали. Различают три группы аустенитных сталей:

  • Стали со структурой твердого раствора, не упрочняемые термообработкой: 10Х18Н12Т, 08Х15Н24В4ТР применяются для пароперегревателей и трубопроводов высокого давления до температур 600…700°С. Для получения однородной аустенитной структуры проводят термообработку: закалку от 1100…1150°С в воде или на воздухе.

  • Стали с карбидным упрочнением 45Х14Н14В2М, 40Х15Н7Г7Ф2МС содержат повышенное содержание углерода (0,3…0,5%С) и карбидообразующих элементов. В результате закалки и старения формируется структура легированного аустенита с дисперсными карбидами. Применяют для изготовления дисков, лопаток, корпусов газовых турбин и др. с рабочими температурами до 700°С.

  • Стали с интерметаллидным упрочнением 10Х11Н20Т3Р, 10Х11Н23Т3МР после закалки и старения получают структуру легированного аустенита с включениями дисперсных интерметаллидов (Ni3Ti, Fe3Ti и др.), когерентно связанных с решеткой γ–твердого раствора. Жаропрочность сохраняется до 750…800°С.