Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Материалка.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
5.51 Mб
Скачать
  1. Превращение аустенита в мартенсит. Особенности этого превращения. Строение и свойства мартенсита. Температуры Мн и Мк, от чего они зависят?

М -упорядоченный пересыщенный углеродом ТВ. Раствор внедрения углерода в альфа железо. М- решётка тетрагональная. Механизм: бездиффузионный. Смещение атомов на расстояния,не превышающие межатомные. М имеет больший удельный объём по сравнению с А, поэтому в процессе роста мартенситного кристалла увеличиваются упругие напряжения, что приводит к пластической деформации. Первые иглы м имеют длину, соответственную поперечному размеру исходного зерна аустенита. Иглы под углом 60 или 120. Мартенситное превращение при непрерывном охлаждении А и ниже температуры Мн. Окончание при Мк.Остаточный А.- М превращение не идёт до конца. Между иглами М зажат А (1..3%). Кол-во его влияет на положение Мн и Мк.При сод. С более 0,6 Мк смещается ниже 0. Чем больше в стали С и ЛЭ, тем ниже Мк, значит больше Аост.

М-высокая твёрдость и хрупкость.

  1. Азотирование и нитроцементация сталей. Применяемые стали. Термическая обработка. Получаемые структура и свойства.

Азотирование – диффузионное насыщение поверхностного слоя стали азотом.

Проводится при температуре 480-600 град.

Переел азотирование проводится ТО, как правило, улучшение (закалка+ВО), с целью повышения прочости и вязкости сердцевины за счет формирования сорбита зернистого.

Азотирование повышает твердость, износостойкость, предел выносливости. Сопротивление коррозии.

Нитроцементация – процесс диффузионного насыщения поверхностного слоя стали одновременно углеродом и азотом.

Проводят при температурах 850-870 в газовой среде, состоящей из науглероживающего газ и аммиака.

После нитроцементации проводится закалка в масле + НО.

Структура: мелкоигольчатый мартенсит, Аост, сердцевина – С, Б или малоуглеродистый М.

Обладают высоким пределом выносливости, контактной прочностью, износостойкостью.

  1. Титан и его сплавы. Их достоинства и недостатки. Маркировка. Влияние легирующих элементов на структуру в равновесном состоянии. Термическая обработка титановых сплавов.

Титан – металл серебристо-белого цвета. Температура плавления титана зависит от степени чистоты и находится в пределах 1660…1680oС.

При температуре 882oС титан претерпевает полиморфное превращение, α–титан с гексагональной решеткой переходит в β– титан с объемно-центрированной кубической решеткой.

Титановые сплавы имеют ряд преимуществ по сравнению с другими: сочетание высокой прочности (σв=800…1000 МПа) с хорошей пластичностью (δ=12…25%); малая плотность, обеспечивающая высокую удельную прочность; хорошая жаропрочность, до 600…700oС;

высокая коррозионная стойкость в агрессивных средах.

Основным недостатком титановых сплавов является плохая обрабатываемость резанием и склонность к насыщаемости газов.

По влиянию на температуру полиморфного превращения ЛЭ титановых сплавов можно разделить на 3 группы: 1. альфа-стабилизаторы - алюминий, азот, кислород. Они увеличивают температуру полиморфного превращения и расширяют область альфа-титана. 2. нейтральные элементы: олово. 3. бета-стабилизаторы - хром, вольфрам, молибден, ванадий, марганец, железо. Они снижают температуру полиморфного превращения и расширяют область бета-титана.

В зависимости от типа и кол-ва ЛЭ титановые сплавы по структуре делятся6

1. альфа-сплавы: основным ЛЭ яв. алюминий + небольшое кол-во бета-стабилизаторов. Например: ВТ5 9(Ti +5%Al). Не упрочняются ТО. Структура: однофазный альфа-тв. раствор ЛЭ в альфа-Ti

2. бета-титановые сплавы: содержат большое кол-во бета-стабилизаторов.

3 Альфа+бета-титановые сплавы: содержат алюминий и бета-стабилизаторы с концентрацией К-С. Например: ВТ6 ( Ti+ 6% Al+ 4,5% V). ТО: закалка с послдующим старением.

Области применения титановых сплавов: 

  • авиация и ракетостроение (корпуса двигателей, баллоны для газов, сопла, диски, детали крепежа);

  • химическая промышленность (компрессоры, клапаны, вентили для агрессивных жидкостей);

  • оборудование для обработки ядерного топлива;

  • морское и речное судостроение (гребные винты, обшивка морских судов, подводных лодок);

  • криогенная техника (высокая ударная вязкость сохраняется до –253oС).

  1. Шейка коленчатого вала должна иметь износостойкую поверхность и высокий комплекс механических свойств в сердцевине. Выбрать сталь, обосновать режим термической обработки, описать получаемые структуру и свойства.

Улучшаемая, хромованадиевая: 40ХФА, ТО:улучшение(норм)+Закалка твч+Но,структура=поверхность М+Аост,сердцевина Сотп.

№23