Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpory_po_matananu_k_ekzamenu_zimney_sessii_1_k...doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
113.15 Кб
Скачать

Экстремумы функций двух переменных.

Функция z=f(x,y) имеет максимум (минимум) в точке M0(x0,y0), если для любой точки M (x,y), находящейся в некоторой p-окрестности точки M0(x0,y0), выполняется условие f(x0,y0)>f(x,y) (f(x0,y0)>f(x,y)); p-окрестность можно представить множеством точек M (x,y), координаты которые удовлетворяют условию √(x-x0)2+(y-y0)2 < p, где p – положительное достаточно малое число.

Максимумы и минимумы функции называются экстремумами, а M0(x0,y0) – экстремальной точкой.

Теорема (необходимые условия экстремума). Если z=f(x,y) – дифференцируемая функция и достигает в точке M0(x0,y0) экстремума, то ее частные производные первого порядка в этой точке равны нулю:

∂z(M0)/ ∂x=0 , ∂z(M0)/ ∂y=0.

Точки, в которых частные производные первого порядка обращаются в нуль (или не существуют), называются критическими или стационарными. Исследование их на экстремум проводят с помощью достаточных условий существования экстремума функции двух переменных.

Пусть M0(x0,y0) – стационарная точка функции z=f(x,y). Для ее исследования сначала вычисляют частные производные второго порядка в точке M0(x0,y0):

2z(M0)/ ∂x2=A; ∂2z(M0)/ ∂x∂y=B; ∂2z(M0)/ ∂y2=C;

а затем дискриминант ∆=AC-B2. Тогда достаточные условия экстремума функции z=f(x,y) в стационарной точке M0(x0,y0) запишутся в следующем виде:

1) ∆>0 – экстремум есть, при этом, если A>0 (или С>0 при A=0), в точке M0(x0,y0) функция имеет минимум, а если A<0 (или C<0 при A=0) – максимум;

2) ∆<0 – экстремума нет;

3) ∆=0 – требуются дополнительные исследования.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]