
- •Тема 1. Понятие операционной системы (ос) Лекция №1. История развития операционных систем Операционные системы в архитектуре вычислительных систем
- •Эволюция операционных систем
- •Лекция №2. Назначение, функции и структура операционных систем
- •Структурная организация ос
- •Классификация операционных систем
- •Тема 2. Управление задачами в ос Лекция №3. Понятие вычислительного процесса и ресурса
- •Диаграмма состояний процесса
- •Блок управления процессом и контекст процесса
- •Лекция №4. Операции над процессами Одноразовые операции
- •Многоразовые операции
- •Переключение контекста
- •Процессы и потоки
- •Лекция №5. Планирование процессов и диспетчеризация задач Понятие и стратегии планирования
- •Вытесняющая и не вытесняющая диспетчеризация
- •Дисциплины диспетчеризации
- •Качество диспетчеризации и гарантии обслуживания
- •Лекция №6. Взаимодействие процессов
- •Организация обмена информацией между процессами
- •Лекция №7. Синхронизация процессов и потоков Необходимость взаимной синхронизации
- •Средства синхронизации процессов и потоков
- •Лекция №8. Проблема тупиков и борьба с ними
- •Тема 3. Управление памятью в ос Лекция №9. Физическая память и виртуальное адресное пространство
- •Модели распределения памяти
- •Лекция №10. Свопинг и виртуальная память
- •Сегментная организация виртуальной памяти
- •Страничная организация виртуальной памяти
- •Оптимизация функционирования страничной виртуальной памяти
- •Сегментно-страничная организация виртуальной памяти
- •Разделяемая память
- •Лекция №11. Уровни иерархии памяти и кэш-память
- •Схемы кэширования и согласования данных
- •Лекция №12. Распределение оперативной памяти в современных ос
- •Тема 4. Организация ввода/вывода в ос Лекция №13. Управление вводом/выводом в ос
- •Устройства ввода-вывода
- •Подсистема ввода-вывода
- •Согласование скоростей обмена и кэширования данных
- •Разделение устройств и данных между процессами
- •Поддержка синхронных и асинхронных операций ввода-вывода
- •Многослойная (иерархическая) модель подсистемы ввода-вывода
- •Назначение и функции драйверов
- •Лекция №14. Файловые системы операционных систем
- •Архитектура файловой системы
- •Организация файлов и доступ к ним
- •Логическая организация файла
- •Каталоговые системы
- •Физическая организация файловой системы
- •Физическая организация и адресация файла
- •Файловая система fat
- •Файловая система ntfs
- •Основные отличия fat и ntfs
- •Тема 5. Распределенные операционные системы Лекция №15. Модели сетевых служб и распределенных приложений
- •Способ разделения приложений на части
- •Лекция №16. Механизмы передачи сообщений в распределенных ос
- •Механизм сокетов
- •Вызов удаленных процедур
- •Тема 6. Безопасность в ос Лекция №17. Основные понятия безопасности
- •Классификация угроз
- •Системный подход к обеспечению безопасности
- •Политика безопасности
- •Лекция №18. Базовые технологии безопасности
- •Односторонние функции шифрования
- •Аутентификация, авторизация, аудит
- •Технология защищенного канала
- •Технологии аутентификации
Диаграмма состояний процесса
Необходимо различать системные управляющие процессы, представляющие работу супервизора и занимающиеся распределением и управлением ресурсов, от всех других процессов: системных обрабатывающих процессов, которые не входят в ядро операционной системы, и процессов пользователя. Для системных управляющих процессов в большинстве операционных систем ресурсы распределяются изначально и однозначно. Эти процессы управляют ресурсами системы, за использование которых существует конкуренция между всеми остальными процессами. Поэтому исполнение системных управляющих программ не принято называть процессами, а значит и задачами (термин «задача» можно употреблять только по отношению к процессам пользователей и к системным обрабатывающим процессам).
Любой процесс может находиться в активном и пассивном (не активном) состоянии. В активном состоянии процесс может участвовать в конкуренции за использование ресурсов вычислительной системы, а в пассивном – он только известен системе, но в конкуренции не участвует. Активный процесс может быть в одном из следующих состояний:
выполнения – все затребованные процессом ресурсы выделены. В этом состоянии в каждый момент времени может находиться только один процесс, если речь идёт об однопроцессорной вычислительной системе;
готовности к выполнению – ресурсы могут быть предоставлены, тогда процесс перейдёт в состояние выполнения;
блокирования или ожидания – затребованные ресурсы не могут быть предоставлены, или не завершена операция ввода/вывода.
В обычных ОС, процесс появляется при запуске какой-нибудь программы. ОС организует (порождает или выделяет) для нового процесса соответствующий дескриптор процесса, и процесс (задача) начинает развиваться (выполняться). Поэтому пассивного состояния не существует. Обычно при проектировании системы реального времени уже заранее бывает известен состав программ (задач), которые должны будут выполняться. Известны и многие их параметры, которые необходимо учитывать при распределении ресурсов (например, объём памяти, приоритет, средняя длительность выполнения, открываемые файлы, используемые устройства и т. п.). Поэтому для них заранее заводят дескрипторы задач с тем, чтобы впоследствии не тратить драгоценное время на организацию дескриптора и поиск для него необходимых ресурсов. Таким образом, в ОС реального времени многие процессы (задачи) могут находиться в состоянии бездействия.
За время своего существования процесс может неоднократно совершать переходы из одного состояния в другое. Это обусловлено обращениями, к операционной системе с запросами ресурсов и выполнения системных функций, которые предоставляет операционная система, взаимодействием с другими процессами, появлением сигналов прерывания от таймера, каналов и устройств ввода/вывода, а также других устройств.
Процесс из состояния бездействия может перейти в состояние готовности в следующих случаях:
по команде оператора (пользователя). Имеет место в тех диалоговых операционных системах, где программа может иметь статус задачи (и при этом являться пассивной), а не просто быть исполняемым файлом и только на время исполнения получать статус задачи (как это происходит в большинстве современных ОС для ПК);
при выборе из очерёди планировщиком (характерно для операционных систем, работающих в пакетном режиме);
по вызову из другой задачи (посредством обращения к супервизору один процесс может создать, инициировать, приостановить, остановить, уничтожить другой процесс);
по прерыванию от внешнего инициативного устройства (сигнал о свершении некоторого события может запускать соответствующую задачу);
при наступлении запланированного времени запуска программы.
Рис.5. Схема переходов состояний процесса
Процесс, который может исполняться, как только ему будет предоставлен процессор, находится в состоянии готовности.
Из состояния выполнения процесс может выйти по одной из следующих причин:
процесс завершается, при этом он посредством обращения к супервизору передаёт управление операционной системе и сообщает о своем завершении. В результате этих действий супервизор либо переводит его в список бездействующих процессов (процесс переходит в пассивное состояние), либо уничтожается (уничтожается, естественно, не сама программа, а именно задача, которая соответствовала исполнению некоторой программы). В состояние бездействия процесс может быть переведен принудительно: по команде оператора (действие этой и других команд оператора реализуется системным процессом, который «транслирует» команду в запрос к супервизору с требованием перевести указанный процесс в состояние бездействия), или путем обращения к супервизору операционной системы из другой задачи с требованием остановить данный процесс;
процесс переводится супервизором операционной системы в состояние готовности к исполнению в связи с появлением более приоритетной задачи или в связи с окончанием выделенного ему кванта времени;
процесс блокируется (переводится в состояние ожидания) либо вследствие запроса операции ввода/вывода (которая должна быть выполнена прежде, чем он сможет продолжить исполнение), либо в силу невозможности предоставить ему ресурс, запрошенный в настоящий момент (причиной перевода в состояние ожидании может быть и отсутствие сегмента или страницы в случае организации механизмов виртуальной памяти), а также по команде оператора на приостановку задачи или по требованию через супервизор от другой задачи.
При наступлении соответствующего события (завершилась операция ввода/вывода, освободился затребованный ресурс, в оперативную память загружена необходимая страница виртуальной памяти и т. д.) процесс деблокируется и переводится в состояние готовности к исполнению.
Процесс не может перейти из одного состояния в другое самостоятельно. Изменением состояния процессов занимается операционная система, совершая операции над ними:
создание процесса – завершение процесса;
приостановка процесса (перевод из состояния исполнение в состояние готовность) – запуск процесса (перевод из состояния готовность в состояние исполнение);
блокирование процесса (перевод из состояния исполнение в состояние ожидание) – разблокирование процесса (перевод из состояния ожидание в состояние готовность).
В дальнейшем, когда мы будем говорить об алгоритмах планирования, появится еще одна операция, не имеющая парной: изменение приоритета процесса.
Операции создания и завершения процесса являются одноразовыми, так как применяются к процессу не более одного раза (некоторые системные процессы при работе вычислительной системы не завершаются никогда). Все остальные операции, связанные с изменением состояния процессов, будь то запуск или блокировка, как правило, являются многоразовыми. Рассмотрим подробнее, как операционная система выполняет операции над процессами.