Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
chtob_vse_sdala.docx
Скачиваний:
3
Добавлен:
01.03.2025
Размер:
1.38 Mб
Скачать

Жаропрочные и криогенные Al сплавы

АК4-1ч.-Т1 - основной жаропрочный сплав средней прочности ( =420 МПа,  =370 МПа;  =270 МПа) для греющихся авиационных конструкций, в том числе для деталей  двигателей. Широко используется в виде плит, листов, штамповок.

АК4-2ч.-Т1 - сплав с повышенной на 10-15% трещиностойкостью по сравнению со сплавом АК4-1ч.-Т1, при близкой прочности.

Д20-Т1  -  разработан для деталей ТРД, работающих при температурах до 300-350°С, сварных  деталей и ёмкостей,  работающих кратковременно при температурах  - 253 до 300°С (σв=380 МПа,  =280 МПа) 

В-1213-Т1 - новый высокопрочный ( ≥480-500  МПа) жаропрочный сплав (легированный серебром) с повышенной трещиностойкостью  (К~35 МПа√м); СРТУ ( =400 МПа;  =285 МПа dl/dN) ~ 3 мм /кцикл). Освоено опытно-промышленное производство листов, профилей, штамповок.

1215-Т1 - сплав повышенной прочности и жаропрочности ( =500 МПа,  =300 МПа,  =155 МПа); освоен в опытно-промышленном производстве.

Предлагаем:

- продажу лицензий, передачу НОУ-ХАУ и технической документации на сплавы и технологии изготовления полуфабрикатов и конструкций;

- усовершенствование и разработку составов сплавов и технологии их изготовления по требованию Заказчика;

- поставку опытных образцов сплавов для исследования;

- научно-техническое сопровождение изготовления изделий.

 

Свариваемые коррозионностойкие высокотехнологичные Al сплавы

АМг2, АМгЗ, АМг6 - термически не упрочняемые сплавы для внутреннего набора самолетов, сварных емкостей и топливных баков, прочность сварных соединений составляет 0,9-0,95 прочности основного материала. Сплав, легированный скандием (1577), имеет прочность в отожженном состоянии, близкую к прочности закаленного и естественно состаренного сплава Д16ч.-Т, и позволяет изготовлять сложные по конфигурации детали в режиме сверхпластичности (δСПД=500-1000%).

 

Самолет Ан-148

1370-Т1 - высокотехнологичный коррозионностойкий термически упрочняемый сплав с повышенными характеристиками жаропрочности ( >400-450 МПа,  >350-370 МПа,  =290 МПа,  =240 МПа) и технологичности при холодной деформации. Сплав используется в виде листов толщиной 0,5-1,2 мм на самолете Ан-148 (обшивка и гофры носовой части стабилизатора, гофры пред­крылков и отклоняемого носка крыла). Освоено производство листов, прессованных профилей и плит, разработана технология сварки. Рекомендуется для обшивки и внутреннего набора фюзеляжа.

1913 (В91п.ч.)-Т3 - коррозионностойкий свариваемый термически упрочняемый сплав с высокой прочностью сварных соединений ( >450 МПа,  >350 МПа, σв.св=0,9σв). Освоено производство листов, прессованных профилей и штамповок, разработана технология сварки. Рекомендуется для применения в авиационной технике, в том числе для гидросамолетов и экранопланов, а также для строительных конструкций.

В-1341-Т, Т1 - высокотехнологичный коррозионностойкий свариваемый сплав средней прочности (свойства в состоянии Т1: σв ≥ 330 МПа; σ0,2 ≥ 260 МПа; δ ≥ 10%, МКК < 0,105 мм). Разработана промышленная технология получения листов толщиной 0,6-3,0 мм с размером зерна менее 50 мкм, что обеспечивает их высокую технологичность при холодном формообразовании (Квыд до 40%, rmin = (0,5-1)ss - толщина листа). Рекомендуется использование в изделиях авиационной техники в виде обшивок, деталей внутреннего набора, перегородок, крепежных узлов, трубопроводов, сварных баллонов различного назначения, работающих в диапазоне температур от -70 до +150°С. Применение тонких листов (до 1,5 мм) в сварных баллонах, работающих под внутренним давлением, вместо листов сплава АМг4 (до 3 мм) обеспечивает герметичность по основному металлу и снижение массы изделий на 35-40%. Применен в новом региональном самолете SSJ. Может быть применен в конструкциях наземного транспорта (топливные баки и др.). Освоено промышленное производство всех видов полуфабрикатов.

 

 Сварной баллон, работающий под давлением, из сплава В-1341

 

  Полупатрубок из сплава В-1341

(штамповка за 1 переход)

Билет№18

1. Диаграмма состояния железо-цементит, свойства компонентов, фаз, структурных составляющих. Стали. Классификации сталей по качеству, маркировка.

Структурные составляющие железоуглеродистых сплавов. Начало изучению железоуглеродистых сплавов и процессов термической обработки было положено опубликованной в 1868 г. Работой Д.К. Чернова «Критический обзор статей Лаврова и Калакуцкого о стали и стальных орудиях и собственные исследования Д.К. Чернова по этому же предмету». Д.К. Чернов впервые указал на существование в стали критических точек и дал первое представление о диаграмме железо-цементит. В дальнейшем изучению железоуглеродистых сплавов и построению диаграмм железо-углерод были посвящены работы Ф. Осмонда, Ле-Шателье (Франция), Р. Аустена (Англия), А.А. Байкова и Н.Т. Гудцова (Россия), Розенбаума (Голландия), П. Геренса (Германия) и др. Основными компонентами, от которых зависит структура и свойства железоуглеродистых сплавов, являются железо и углерод. Чистое железо - металл серебристо-белого цвета; температура плавления 1539°С. Железо имеет две полиморфные модификации: α и γ. Модификация α существует при температурах ниже 911°С и выше 1392°С; γ-железо - при 911-1392°С. В зависимости от температуры и концентрации углерода железоуглеродистые сплавы имеют следующие структурные составляющие. 1. Феррит (Ф) - твердый раствор внедрения углерода в α-железе. Растворимость углерода в α-железе при комнатной температуре до 0,005%; наибольшая растворимость - 0,02% при 727°С. Феррит имеет незначительную твердость (НВ 80-100) и прочность (σв=250 МПа), но высокую пластичность (δ=50%; φ=80%). 2. Аустенит (А) - твердый раствор внедрения углерода в γ-железе. В железоуглеродистых сплавах он может существовать только при высоких температурах. Предельная растворимость углерода в γ-железе 2,14% при температуре 1147°С и 0,8% - при 727°С. Эта температура является нижней границей устойчивого существования аустенита в железоуглеродистых сплавах. Аустенит имеет твердость НВ 160-200 и весьма пластичен (δ=40-50%). 3. Цементит (Ц) - химическое соединение железа с углеродом (карбид железа Fe3C). В цементите содержится 6,67% углерода. Температура плавления цементита около 1600°С. Он очень тверд (НВ~800), хрупок и практически не обладает пластичностью. Цементит неустойчив и в определенных условиях распадается, выделяя свободный углерод в виде графита по реакции Fe3C→3Fe+C. 4. Графит - это свободный углерод, мягок (НВ 3) и обладает низкой прочностью. В чугунах и графитизированной стали содержится в виде включений различных форм (пластинчатой, шаровидной и др.). С изменением формы графитовых включений меняются механические и технологические свойства сплава. 5. Перлит (П) - механическая смесь (эвтектоид, т. е. подобный эвтектике, но образующийся из твердой фазы) феррита и цементита, содержащая 0,8% углерода. Перлит может быть пластинчатым и зернистым (глобулярным), что зависит от формы цементита (пластинки или зерна) и определяет механические свойства перлита. При комнатной температуре зернистый перлит имеет предел прочности σв=800 МПа; относительное удлинение δ=15%; твердость НВ 160. Перлит образуется следующим образом. Пластинка (глобуль) цементита начинает расти или от границы зерна аустенита, или центром кристаллизации является неметаллическое включение. При этом соседние области обедняются углеродом и в них образуется феррит. Этот процесс приводит к образованию зерна перлита, состоящего из параллельных пластинок или глобулей цементита и феррита. Чем грубее и крупнее выделения цементита, тем хуже механические свойства перлита. 6. Ледебурит (Л) - механическая смесь (эвтектика) аустенита и цементита, содержащая 4,3% углерода. Ледебурит образуется при затвердевании жидкого расплава при 1147°С. Ледебурит имеет твердость НВ 600-700 и большую хрупкость. Поскольку при температуре 727°С аустенит превращается в перлит, то это превращение охватывает и аустенит, входящий в состав ледебурита. Вследствие этого при температуре ниже 727°С ледебурит представляет собой уже не смесь аустенита с цементом, а смесь перлита с цементитом. Помимо перечисленных структурных составляющих в железоуглеродистых сплавах могут быть нежелательные неметаллические включения: окислы, нитриды, сульфиды, фосфиды – соединения с кислородом, азотом, серой и фосфором. На их основе могут образовываться новые структурные составляющие, например фосфидная эвтектика (Fe+Fe3P+Fe3C) с температурой плавления 950°С. Она образуется при больших содержаниях фосфора в чугуне. При содержании фосфора около 0,5-0,7% фосфидная эвтектика в виде сплошной сетки выделяется по границам зерен и повышает хрупкость чугуна. Диаграмма состояния железо - цементит. В диаграмме состояния железо – цементит (Fe-Fe3C) рассматриваются процессы кристаллизации железоуглеродистых сплавов (стали и чугуна) и превращения в их структурах при медленном охлаждении от жидкого расплава до комнатной температуры. Диаграмма (рис.18) показывает фазовый состав и структуру сплавов с концентрацией от чистого железа до цементита (6,67% С). Сплавы с содержанием углерода до 2,14% называют сталью, а от 2,14 до 6,67% - чугуном. Диаграмма состояния Fe-Fe3C представлена в упрощенном виде. Первичная кристаллизация, т. е. затвердевание жидкого сплава начинается при температурах, соответствующих линии ликвидуса ACD. Точка А на этой диаграмме соответствует температуре 1539° плавления (затвердевания) железа, точка D – температуре ~1600°С плавления (затвердевания) цементита. Линия солидуса AECF соответствует температурам конца затвердевания. При температурах, соответствующих линии АС, из жидкого сплава кристаллизуется аустенит, а линии CD - цементит, называемый первичным цементитом. В точке С при 1147°С и содержании углерода 4,3% из жидкого сплава одновременно кристаллизуется аустенит и цементит (первичный), образуя эвтектику - ледебурит. При температурах, соответствующих линии солидуса АЕ, сплавы с содержанием углерода до 2,14% окончательно затвердевают с образованием аустенита. На линии солидуса ECF сплавы с содержанием углерода от 2,14 до 6,67% окончательно затвердевают с образованием эвтектики (ледебурита) и структур, образовавшихся ранее из жидкого сплава, а именно: в интервале 2,14-4,3% С - аустенита, а в интервале 4,3-6,67% С - цементита первичного (см. рис. 18). В результате первичной кристаллизации во всех сплавах с содержанием углерода до 2,14%, т. е. в сталях, образуется однофазная структура - аустенит. В сплавах с содержанием углерода более 2,14%, т. е. в чугунах, при первич ной кристаллизации образуется эвтектика ледебурита.

Рис. 18. Диаграмма состояния железо-цементит (в упрощенном виде): А – аустенит, П – перлит, Л – ледебурит, Ф – феррит, Ц - цементит

Вторичная кристаллизация (превращение в твердом состоянии) происходит при температурах, соответствующих линиям GSE, PSK и GPQ. Превращения в твердом состоянии происходят вследствие перехода железа из одной аллотропической модификации в другую (γ в α) и в связи с изменением растворимости углерода в аустените и феррите. С понижением температуры растворимость уменьшается. Избыток углерода выделяется из твердых растворов в виде цементита. В области диаграммы AGSE находится аустенит. При охлаждении сплавов аустенит распадается с выделением феррита при температурах, соответствующих линий GS, и цементита, называемого вторичным, при температурах, соответствующих линии SE. Вторичным называют цементит, выделяющийся из твердого раствора аустенита, в отличие от первичного цементита, выделяющегося из жидкого расплава. В области диаграммы GSP находится смесь феррита и распадающегося аустенита. Ниже линии GP существует только феррит. При дальнейшем охлаждении до температур, соответствующих линии PQ, из феррита выделяется цементит (третичный). Линия PQ показывает, что с понижением температуры растворимость углерода в феррите уменьшается от 0,02% при 727°С до 0,005% при комнатной температуре. В точке S при содержании 0,8% углерода и температуре 727°С весь аустенит распадается и превращается в механическую смесь феррита и цементита - перлит. Сталь, содержащую 0,8% углерода, называют эвтектоидной (рис. 19,6). Стали, содержащие от 0,02 до 0,8% углерода, называют доэвтектоидными (рис. 19, а ) , а от 0,8 до 2,14% углерода - заэвтектоидными (рис. 19, в). При температурах, соответствующих линии PSK, происходит распад аустенита, оставшегося в любом сплаве системы, с образованием перлита, представляющего собой механическую смесь феррита и цементита. Линию PSK называют линией перлитного превращения. При температурах, соответствующих линии SE, аустенит насыщен углеродом, и при понижении температуры из него выделяется избыточный углерод в виде цементита (вторичного). Вертикаль DFKL означает, что цементит имеет неизменный химический состав. Меняется лишь форма и размер его кристаллов, что существенно отражается на свойствах сплавов. Самые крупные кристаллы цементита образуются, когда он выделяется при первичной кристаллизации из жидкости. Белый чугун, содержащий 4,3% углерода, называют эвтектическим (рис. 20). Белые чугуны, содержащие от 2,14 до 4,3% углерода, называют доэвтектическими, а от 4,3 до 6,67% углерода - заэвтектическими. По достижении температуры 727°С (линия PSK) аустенит, обедненный углеродом до эвтектоидного состава (0,8% углерода), превращается в перлит. После окончательного охлаждения доэвтектические белые чугуны состоят из перлита, ледебурита (перлит+цементит) и цементита (вторичного). Чем больше в структуре такого чугуна углерода, тем меньше в нем перлита и больше ледебурита. Белый эвтектический чугун (4,3% углерода) при температурах ниже 727°С состоит только из ледебурита. Белый заэвтектический чугун, содержащий более 4,3% углерода, после окончательного охлаждения состоит из цементита (первичного) и ледебурита. Следует отметить, что при охлаждении ледебурита ниже линии PSK входящий в него аустенит превращается в перлит, т. е. ледебурит при комнатной температуре представляет собой уже смесь цементита и перлита. При этом цементит образует сплошную матрицу, в которой размещены колонии перлита. Такое строение ледебурита является причиной его большой твердости (НВ>600) и хрупкости. Диаграмма состояния железо-цементит имеет большое практическое значение. Ее применяют для определения тепловых режимов термической обработки и горячей обработки давлением (ковка, горячая штамповка, прокатка) железоуглеродистых сплавов. Ее используют также в литейном производстве для определения температуры плавления, чтo необходимо для назначения режима заливки жидкого железоуглеродистого сплава в литейные формы.

Рис. 19. Микроструктура: а – доэвтектоидная сталь – феррит (светлые участки) и перлит (темные участки) при 500х увеличении, б – эвтектоидная сталь – перлит (1000х), в – заэвтектоидная сталь – перлит и цементит в виде сетки (200х)

Рис. 20. Микроструктура белого чугуна при 500х увеличении: а- доэвтектический чугун – перлит (темные участки) и ледебурит (цементит вторичный в структуре не виден), б – эвтектический чугун – ледебурит (смесь перлита и цементита), в – заэвтектический чугун – цементит (светлые пластины) и ледебурит.

 Классификация и маркировка сталей.

Сталями принято называть сплавы железа с углеродом, содержание до 2,14% углерода. Кроме того, в состав сплава обычно входят марганец, кремний, сера и фосфор; некоторые элементы могут быть введены для улучшения физико-химических свойств специально (легирующие элементы).

Стали, классифицируют по самым различным признакам. Мы рассмотрим следующие:

Химический состав.

В зависимости от химического состава различают стали углеродистые (ГОСТ 380-71, ГОСТ 1050-75) и легированные (ГОСТ 4543-71, ГОСТ 5632-72, ГОСТ 14959-79). В свою очередь углеродистые стали могут быть:

  • малоуглеродистыми, т. е. содержащими углерода менее 0,25%;

  • среднеуглеродистыми, содержание углерода составляет 0,25-0,60%

  • высокоуглеродистыми, в которых концентрация углерода превышает 0,60% Легированные стали подразделяют на:

  1. низколегированные содержание легирующих элементов до 2,5%

  2. среднелегированные, в их состав входят от 2,5 до 10% легирующих элементов;

  3. высоколегированные, которые содержат свыше 10% легирующих элементов.

Назначение.

По назначению стали бывают:

  • Конструкционные, предназначенные для изготовления строительных и машиностроительных изделий.

  • Инструментальные, из которых изготовляют режущий, мерительный, штамповый и прочие инструменты. Эти стали содержат более 0,65% углерода.

  • С особыми физическими свойствами, например, с определенными магнитными характеристиками или малым коэффициентом линейного расширения: электротехническая сталь, суперинвар.

  •  С особыми химическими свойствами, например, нержавеющие, жаростойкие или жаропрочные стали.

Качество.

В зависимости от содержания вредных примесей: серы и фосфора-стали подразделяют на:

  1. Стали обыкновенного качества, содержание до 0.06% серы и до 0,07% фосфора.

  2. Качественные - до 0,035% серы и фосфора каждого отдельно.

  3. Высококачественные - до 0.025% серы и фосфора.

  4. Особовысококачественные, до 0,025% фосфора и до 0,015% серы.

Степень раскисления.

                        По степени удаления кислорода из стали, т. е. По степени её раскисления, существуют:

  • спокойные стали, т. е., полностью раскисленные; такие стали обозначаются буквами “сп” в конце марки (иногда буквы опускаются);

  • кипящие стали - слабо раскисленные; маркируются буквами "кп";

  •  полу спокойные стали, занимающие промежуточное положение между двумя предыдущими; обозначаются буквами "пс".

Сталь обыкновенного качества подразделяется еще и по поставкам на 3 группы:

  1. сталь группы А поставляется потребителям по механическим свойствам (такая сталь может иметь повышенное содержание серы или фосфора);

  2. сталь группы Б - по химическому составу;

  3. сталь группы В - с гарантированными механическими свойствами и химическим составом.

В зависимости от нормируемых показателей (предел прочности σ, относительное удлинение δ%, предел текучести δт, изгиб в холодном состоянии) сталь каждой группы делится на категории, которые обозначаются арабскими цифрами.

Стали обыкновенного качества обозначают буквами "Ст" и условным номером марки (от 0 до 6) в зависимости от химического состава и механических свойств. Чем выше содержание углерода и прочностные свойства стали, тем больше её номер. Буква "Г" после номера марки указывает на повышенное содержание марганца в стали. Перед маркой указывают группу стали, причем группа "А" в обозначении марки стали не ставится. Для указания категории стали к обозначению марки добавляют номер в конце соответствующий категории, первую категорию обычно не указывают.

Например:

Ст1кп2 - углеродистая сталь обыкновенного качества, кипящая, № марки 1, второй категории, поставляется потребителям по механическим свойствам (группа А);

ВСт5Г - углеродистая сталь обыкновенного качества с повышенным содержанием марганца, спокойная, № марки 5, первой категории с гарантированными механическими свойствами и химическим составом (группа В);

Вст0 - углеродистая сталь обыкновенного качества, номер марки 0, группы Б, первой категории (стали марок Ст0 и Бст0 по степени раскисления не разделяют).

Качественные стали маркируют следующим образом:

1      в начале марки указывают содержание углерода цифрой, соответствующей его средней концентрации;

а) в сотых долях процента для сталей, содержащих до 0,65% углерода;

05кп – сталь углеродистая качественная, кипящая, содержит 0,05% С;

60 – сталь углеродистая качественная, спокойная, содержит 0,60% С;

б) в десятых долях процента для индустриальных сталей, которые дополнительно снабжаются буквой "У":

У7 – углеродистая инструментальная, качественная сталь, содержащая 0,7% С, спокойная (все инструментальные стали хорошо раскислены);

У12 - углеродистая инструментальная, качественная сталь, спокойная содержит 1,2% С;

2     легирующие элементы, входящие в состав стали, обозначают русскими буквами:

 

А – азот          К – кобальт     Т – титан         Б – ниобий       М – молибден Ф- ванадий     

В – вольфрам  Н – никель      Х – хром         Г – марганец

П – фосфор     Ц – цирконий   Д – медь         Р – бор                        Ю – алюминий

Е – селен         С – кремний    Ч – редкоземельные металлы

 

Если после буквы, обозначающей легирующий элемент, стоит цифра, то она указывает содержание этого элемента в процентах. Если цифры нет, то сталь содержит 0,8-1,5% легирующего элемента, за исключением молибдена и ванадия (содержание которых в солях обычно до 0,2-0,3%), а также бора (в стали с буквой Р его должно быть не менее 0,0010%).

Примеры:

14Г2 – низко  легированная  качественная  сталь,  спокойная,  содержит приблизительно 14% углерода и до 2,0% марганца.

03Х16Н15М3Б - высоко легированная качественная сталь, спокойная содержит 0,03% C, 16,0% Cr, 15,0% Ni, до З,0% Мо, до 1,0% Nb.

Высококачественные и особовысококачественные стали.

Маркируют, так же как и качественные, но в конце марки высококачественной стали ставят букву А, (эта буква в середине марочного обозначения указывает на наличие  азота,  специально  введённого  в  сталь),  а  после  марки особовысококачественной - через тире букву "Ш".

Например:

У8А - углеродистая инструментальная высоко качественная сталь, содержащая 0,8% углерода;

30ХГС-III – особовысококачественная среднелегированная сталь, содержащая 0,30% углерода и от 0,8 до 1,5% хрома, марганца и кремния каждого.

Отдельные группы сталей обозначают несколько иначе.

Шарикоподшипниковые стали маркируют буквами "ШХ", после которых указывают содержание хрома в десятых долях процента:

ШХ6 - шарикоподшипниковая сталь, содержащая 0,6% хрома;

ШХ15ГС - шарикоподшипниковая сталь, содержащая 1,5% хрома и от 0,8 до 1,5% марганца и кремния.

Быстрорежущие стали (сложнолегированные) обозначают буквой "Р", следующая за ней цифра указывает на процентное содержание в ней вольфрама:

Р18-быстрорежущая сталь, содержащая 18,0% вольфрама;

Р6М5К5-быстрорежущая сталь, содержащая 6,0% вольфрама 5,0% молибдена 5,0% кобальта.

Автоматные стали обозначают буквой "А" и цифрой, указывающей среднее содержание углерода в сотых долях процента:

А12 - автоматная сталь, содержащая 0,12% углерода (все автоматные стали имеют повышенное содержание серы и фосфора);

А40Г - автоматная сталь с 0,40% углерода и повышенным до 1,5% содержанием марганца.

2 Основные превращения в сталях. Условия, при которых они протекают. Особенности превращения аустенита в мартенсит.

 

Любая разновидность термической обработки состоит из комбинации четырех основных превращений, в основе которых лежат стремления системы к минимуму свободной энергии (рис 12.2).

Рис. 12.2. Зависимость свободной энергии структурных составляющих сталей от температуры: аустенита (FA), мартенсита (FM), перлита (FП)

 

1. Превращение перлита в аустенит , происходит при нагреве выше критической температуры А1, минимальной свободной энергией обладает аустенит.

2. Превращение аустенита в перлит , происходит при охлаждении ниже А1, минимальной свободной энергией обладает перлит:

3. Превращение аустенита в мартенсит , происходит при быстром охлаждении ниже температуры нестабильного равновесия

4. Превращение мартенсита в перлит ; – происходит при любых температурах, т.к. свободная энергия мартенсита больше, чем свободная энергия перлита.

Превращение аустенита в мартенсит при высоких скоростях охлаждения

 

Данное превращение имеет место при высоких скоростях охлаждения, когда диффузионные процессы подавляются. Солровождается полиморфным превращением в

При охлаждении стали со скоростью, большей критической (V > Vк), превращение начинается при температуре начала мартенситного превращения н) и заканчивается при температуре окончания мартенситного превращения (Мк). В результате такого превращения аустенита образуется продукт закалки – мартенсит.

Минимальная скорость охлаждения Vк, при которой весь аустенит переохлаждается до температуры тн и превращается, называется критической скоростью закалки.

Так как процесс диффузии не происходит, то весь углерод аустенита остается в решетке и располагается либо в ценрах тетраэдров, либо в середине длинных ребер (рис. 13.1).

Мартенсит – пересыщенный твердый раствор внедрения углерода в .

При образовании мартенсита кубическая решетка сильно искажается, превращаясь в тетрагональную (рис. 13.1 а). Искажение решетки характеризуется степенью тетрагональности: с/а > 1. Степень тетрагональности прямопролорциональна содержанию углерода в стали (рис. 13.1 б).

Рис. 13 1. Кристаллическая решетка мартенсита (а); влияние содержания углерода на параметры а и с решетки мартенсита (б)

 

Механизм мартенситного превращения имеет ряд особенностей.

1. Бездиффузионный характер.

Превращение осуществляется по сдвиговому механизму. В начале превращения имеется непрерывный переход от решетки аустенита к решетке мартенсита (когерентная связь). При превращении гранецентрированной кубической решетки в объемно-центрированную кубическую атомы смещаются на расстояния меньше межатомных, т.е. нет необходимости в самодиффузии атомов железа.

2. Ориентированность кристаллов мартенсита.

Кристаллы имеют форму пластин, сужающихся к концу, под микроскопом такая структура выглядит как игольчатая. Образуясь мгновенно пластины растут либо до границы зерна аустенита, либо до дефекта. Следующие пластины расположены к первым под углами 60 o или 120 o, их размеры ограничены участками между первыми пластинами (рис. 13.2).

Рис. 13.2. Ориентированность кристаллов мартенсита

 

Ориентированный (когерентный) рост кристаллов мартенсита обеспечивает минимальную поверхностную энергию. При когерентном росте, из-за различия объемов аустенита и мартенсита, возникают большие напряжения. При достижении определенной величины кристаллов мартенсита, эти напряжения становятся равными пределу текучести аустенита. В результате этого нарушается когерентность и происходит отрыв решетки мартенсита от решетки аустенита. Рост кристаллов прекращается.

3. Очень высокая скорость роста кристалла, до 1000 м/с.

4. Мартенситное превращение происходит только при непрерывном охлаждении. Для каждой стали начинается и заканчивается при определенной температуре, независимо от скорости охлаждения. Температуру начала мартенситного превращения называют мартенситной точкой МН, а температуру окончания превращения – МК. Температуры МН и МК зависят от содержания углерода и не зависят от скорости охлаждения Для сталей с содержанием углерода выше 0,6 % МК уходит в область отрицательных температур (рис.13.3)

Рис. 13.3. Зависимость температур начала (МН) и конца (МК)мартенситного превращения от содержания углерода в стали

 

Мартенситное превращение чувствительно к напряжениям, и деформация аустенита может вызвать превращение даже при температурах выше МН.

В сталях с МК ниже 20oС присутствует аустенит остаточный, его количество тем больше, чем ниже МН и МК.(при содержании углерода 0,6…1,0 % количество аустенита остаточного – 10 %, при содержании углерода 1,5 % - до 50 %). В микроструктуре наблюдается в виде светлых полей между иглами мартенсита.

5. Превращение необратимое. Получить аустенит из мартенсита невозможно.

Свойства мартенсита обусловлены особенностями его образования. Он характеризуется высокой твердостью и низкой пластичностью, что обуславливает хрупкость.

Твердость составляет до 65 HRC. Высокая твердость вызвана влиянием внедренных атомов углерода в решетку -фазы, что вызывает ее искажение и возникновение напряжений. С повышением содержания углерода в стали возрастает склонность к хрупкому разрушению.

Билет№19

1.Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии (с эвтектикой). Условия кристаллизации эвтектики.

Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии.

Диаграмма состояния и кривые охлаждения типичных сплавов системы представлены на рис.5.5.

1. Количество компонентов: К = 2 (компоненты А и В);

2. Число фаз: f = 3 (жидкая фаза и кристаллы твердых растворов   (раствор компонента В в компоненте А) и   ( раствор компонента А в компоненте В));

3. Основные линии диаграммы:

 линия ликвидус acb, состоит из двух ветвей, сходящихся в одной точке;

 линия солидус аdcfb, состоит из трех участков;

 dm – линия предельной концентрации компонента В в компоненте А;

 fn – линия предельной концентрации компонента А в компоненте В.

4. Типовые сплавы системы.

При концентрации компонентов, не превышающей предельных значений (на участках Аm и nВ), сплавы кристаллизуются аналогично сплавам твердым растворам с неограниченной растворимостью, см кривую охлаждения сплава I на рис. 5.5 б. При концентрации компонентов, превышающей предельные значения (на участке dcf), сплавы кристаллизуются аналогично сплавам механическим смесям, см. кривую охлаждения сплава II на рис. 5.5 б.

Рис. 5.5 Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии (а) и кривые охлаждения типичных сплавов (б)

 

Сплав с концентрацией компонентов, соответствующей точке с, является эвтектическим сплавом. Сплав состоит из мелкодисперсных кристаллов твердых растворов   и  , эвт. (кр. тв. р-ра   + кр. тв. р-ра  )

Кристаллы компонентов в чистом виде ни в одном из сплавов не присутствуют.

№2. Четыре основных превращения в сталях. Превращение аустенита в перлит. Характеристика и свойства продуктов превращения аустенита.

Превращение связано с диффузией углерода, сопровождается полиморфным превращением , выделением углерода из аустенита в виде цементита, разрастанием образовавшегося цементита.

В зависимости от степени переохлаждения различают три области превращения. Вначале, с увеличением переохлаждения скорость превращения возрастает, а затем убывает. При температуре 727 oС и ниже 200o С скорость равна нулю. При температуре 200o С равна нулю скорость диффузии углерода.

 

Закономерности превращения.

 

Образцы нагревают до температуры, при которой структура состоит из однородного аустенита (7700 С). Затем переносят в термостаты с заданной температурой (интервал 25 – 500 С). Превращение аустенита можно легко обнаружить с помощью наблюдений за изменением магнитных характеристик, так как аустенит парамагнитен, а феррит и цементит обладают магнитными свойствами.

Получают серию кинетических кривых (рис. 12.5 а), которые показывают количество образовавшегося перлита в зависимости от времени, прошедшего с начала превращения.

Рис. 12.5. Кинетические кривые превращения аустенита при охлаждении (а); диаграмма изотермического превращения аустенита (б)

 

В начале наблюдается инкубационный подготовительный период, время, в течение которого сохраняется переохлажденный аустенит. Превращение протекает с различной скоростью и достигает максимума при образовании 50 % продуктов распада.

Затем скорость начинает уменьшаться и постепенно затухает. С увеличением степени переохлаждения устойчивость аустенита уменьшается, а затем увеличивается.

Горизонтальная линия Мн показывает температуру начала бездиффузного мартенситного превращения. Такие диаграммы называются диаграммами изотермического превращения аустенита (рис. 12.5 б).

При малых степенях переохлаждения, в области температур 727…550o С, сущность превращения заключается в том, что в результате превращения аустенита образуется механическая смесь феррита и цементита, состав которой отличается от состава исходного аустенита. Аустенит содержит 0,8 % углерода, а образующиеся фазы: феррит –0,02 %, цементит – 6,67 % углерола.

Время устойчивости аустенита и скорость его превращения зависят от степени переохлаждения.

Максимальная скорость превращения соответствует переохлаждению ниже температуры на 150…200o С, то есть соответствует минимальной устойчивости аустенита.

Механизм превращения представлен на рис. 12.6.

Рис. 12.6. Механизм превращения аустенита в перлит

 

При образовании перлита из аустенита ведущей фазой является цементит. Зарождение центров кристаллизации цементита облегчено на границе аустенитных зерен. Образовавшаяся пластинка цементита растет, удлиняется и обедняет соседние области углеродом. Рядом с ней образуются пластинки феррита. Эти пластинки растут как по толщине, так и по длине. Рост образовавшихся колоний перлита продолжается до столкновения с кристаллами перлита, растущими из других центров.

Свойства и строение продуктов превращения аустенита зависят от температуры, при которой происходит процесс его распада.

Толщина соседних пластинок феррита и цементита определяет дисперсность структуры и обозначается . Она зависит от температуры превращения. В зависимости от дисперсности продукты распада имеют различное название.

мм – перлит.

Образуется при переохлаждении до температуры Т = 650…700 oС, или при скорости охлаждения Vохл = 30…60 oС/ч. Твердость составляет 180…250 НВ.

мм – сорбит

Образуется при переохлаждении до температуры Т = 600…650 oС, или при скорости охлаждения Vохл = 60 oС/с. Твердость составляет 250…350 НВ. Структура характеризуется высоким пределом упругости, достаточной вязкостью и прочностью.

мм – троостит

Образуется при переохлаждении до температуры Т = 550…600 oС, или при скорости охлаждения Vохл = 150 oС/с. Твердость составляет 350…450 НВ. Структура характеризуется высоким пределом упругости, малой вязкостью и лпастичностью.

Твердость ферритно-цементитной смеси прямопропорциональна площади поверхности раздела между ферритом и цементитом..

Если температура нагрева незначительно превышала теипературу А и полученый аустенит неоднороден по составу, то при малой степени переохлаждения образуется зернистый леплит.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]