
- •1.Понятие и общее представление о статистике.
- •2.Предмет, метод и задачи статистики.
- •3.Сущность сводки и группировки статистических данных.
- •4.Виды группировок.
- •5.Статистические ряды распределения.
- •Закономерности распределения
- •Общие понятия о статистических таблицах
- •Виды статистических таблиц
- •Основные правила составления и анализа статистических таблиц
- •7.Статистическое наблюдение: формы, виды, и способы.
- •Этапы статистического наблюдения
- •Формы, виды и способы статистического исследования Формы статистического наблюдения
- •Виды статистического наблюдения
- •Виды статистического наблюдения по времени регистрации:
- •По полноте охвата единиц совокупности различают следующие виды статистического наблюдения:
- •Способы статистического наблюдения Способы получения статистической информации:
- •Ошибки статистического наблюдения
- •8.Современная организация государственной статистики России.
- •9.Статистическая отчётность.
- •10.Контроль материалов наблюдения.
- •11. Понятие, методы расчёта абсолютных и относительных величин.
- •12.Виды относительных величин.
- •13.Принципы построения относительных величин. Системы статистических показателей.
- •Система статистических показателей —
- •14.Графическое отображение статистических данных.
- •15.Понятие, сущность, значение средних величин.
- •16.Средняя арифметическая и её свойства.
- •17.Виды степенных средних.
- •18.Структурные средние величины.
- •19.Понятие и сущность рядов динамики в статистике
- •20. Показатели динамики
- •Примеры расчетов показателей динамики
- •Абсолютный прирост
- •Темп роста
- •Темп прироста
- •Абсолютное значение 1%-го прироста
- •21. Средние показатели рядов динамики Средний уровень ряда в статистике
- •Средний абсолютный прирост в задачах статистики
- •Средний темп роста
- •Средний темп прироста
- •22.Понятие и методология выравнивания рядов динамики. Приведение рядов динамики к одинаковому основанию
- •Методы выравнивания рядов динамики
- •Метод укрупнения интервалов времени (гр. 3).
- •Метод скользящей средней
- •23.Анализ сезонных колебаний
- •24.Аналитическое выравнивание Метод аналитического выравнивания
- •25.Методы прогнозирования в статистике
- •Тема 7. Статистические методы прогнозирования: экспоненциальное сглаживание и анализ временных рядов.
- •26.Показатели размера и интенсивности вариации
- •27.Показатели и формы распределения
- •28.Нормальное распределение и его свойства
- •29.Сущность, значение и категории выборочного наблюдения.
- •30. Виды и способы отбора.
- •31.Ошибки выборочного наблюдении
- •32.Определение объёма выборки.
- •33. Понятие корреляционно-регрессионного анализа в статистике.
- •34. Множественный корреляционно-регрессионный анализ.
- •35. Метод корреляционно-регрессионного анализа.
- •36.Понятие и основные элементы индексов.
- •37.Виды индексов.
- •38.Агрегатные индексы.
- •39.Индексный анализ при изучении экономических явлений.
- •Агрегатные индексы качественных показателей
- •Агрегатные индексы объемных показателей
- •Ряды агрегатных индексов с постоянными и переменными весами
- •Построение сводных территориальных индексов
- •Средние индексы
- •40.Средневзвешенные индексы.
5.Статистические ряды распределения.
Статистические ряды распределения представляют собой упорядоченное распределение единиц совокупности по группам и группировкам. Ряды распределения изучают структуру совокупности, позволяют изучить ее однородность, размах и границы. Ряды распределения, образованные по качественным признакам, называютатрибутивными. При группировке по количественному признаку выделяются вариационные ряды. Вариационные ряды – ряды распределения единиц совокупности по признакам, имеющим количественное выражение, т. е. образованы численными значениями.
Вариационные ряды по строению делятся на:
Дискретные (прерывные) – основаны на прерывных вариациях признака. Это такие ряды, где значения вариант имеют значения целых чисел (т. е. не могут принимать дробные значения). Дискретные признаки отличаются друг от друга на некоторую конкретную величину.
Интервальные (непрерывные) – имеют любые, в том числе и дробные количественные выражения и представлены в виде интервалов. Непрерывные признаки могут отличаться один от другого на сколь угодно малую величину.
Вариационные ряды имеют два элемента:
варианта (x)
частота (f)
Варианта – отдельное значение варьируемого признака, которое он принимает в ряду распределения.
Частота – численность отдельных вариант или каждой группы вариационного ряда. В некоторых случаях применяется частость. Частоты, выраженные в % или долях процента, называются частостями и рссчитываются как отношение локальной частоты варианты к сумме накопленных частот.
В свою очередь, частота бывает:
локальной
накопленной (кумулятивная – нарастающим итогом)
Если вариационный ряд имеет неравные интервалы, то частоты в отдельных интервалах не сопоставимы, т. к. зависят от ширины интервала. В этих случаях рассчитывают плотность распределения, которая дает правильное представление о характере распределения вариант (единиц совокупности). Плотность распределения, в свою очередь, бывает:
абсолютная плотность распределения – отношение частоты к величине (ширине) интервала
относительная плотность распределения – отношение частости к ширине интервала
Интервалы |
Локальная частота (f) |
Накопленная частота (Σf) |
Частость (ω) |
Плотность распределения (φ) |
20-30 |
3 |
3 |
0,3 |
0,03 |
30-40 |
5 |
8 |
0,5 |
0,05 |
40-50 |
1 |
9 |
0,1 |
0,01 |
50-60 |
1 |
10 |
0,1 |
0,01 |
Для характеристики рядов распределения применяются следующие показатели:
средняя степенная
мода
медиана
Закономерности распределения
Каждому ряду распределения свойственна определенная закономерность, выражением которой является кривая распределения, представляющая собой функцию распределения. Можно выделить определенную зависимость между изменением частот и изменением значений признаков: частоты изменяются закономерно с изменением варьирующего признака, т. е. с увеличением значения варьирующего признака частоты первоначально увеличиваются, затем, достигнув какой-то максимальной величины в середине ряда, уменьшаются. Такие закономерности изменения частот в вариационных рядах называются закономерностями распределения.
Эмпирическим распределением называют распределение частот (относительных частот), соответствующих отдельным значениям признака, функционально связанных с изменением вариант.
Если в качестве весов при расчете центрального момента взять не частоты (f), а вероятности (p), то получим теоретические моменты распределения. Отсюда –теоретическим называют распределение вероятностей.
Если имеется эмпирический ряд распределения, то необходимо найти функцию распределения, т. е. подобрать такую теоретическую кривую распределения, которая бы наиболее полно отражала закономерность распределения.
Под кривой распределения понимается графическое изображение в виде непрерывной линии изменения частот (вероятностей), функционально связанных с изменением вариант.
Закон распределения случайной величины может быть задан в виде таблицы, функции распределения либо плотности распределения.
В статистике широко используются различные виды теоретических распределений: распределение Стьюдента, Пуассона, нормальное распределение, хи-квадрат распределение, распределение Фишера, биномиальное (распределение Бернулли), равномерное распределение. Каждое из теоретических распределений имеет специфику и свою область применения в различных отраслях знаний.
Первым фундаментальным по значимости является нормальный закон распределения (ЗНР).
Подчиненность закону нормального распределения тем точнее, чем больше факторов действует вместе. Часто возникают распределения, хотя и не отвечающие строго нормальному распределению, но имеющие с ним сходство, а именно: вероятность min и max значений тем меньше, чем больше отклонение отдельных вариант от общей средней. Иными словами: минимальные и максимальные варианты встречаются много реже, чем серединные.
Нормальное распределение полностью определяется двумя входными параметрами: средней арифметической и среднеквадратическим отклонением (Ϭ).
Кривая распределения симметрична относительно точки максимума x=a(μ).
Если учесть величину среднеквадратического отклонения Ϭ, то окажется, что при больших значениях Ϭ значение плотности вероятности f(x) мало и наоборот – при малых значениях Ϭ плотность вероятности (ордината точки максимума) неограниченно возрастает. Отсюда: среднеквадратическое отклонение нормально распределенной СВ существенно влияет на форму нормальной кривой. Максимальная ордината кривой обратно пропорциональна среднеквадратическому отклонению Ϭ. Вся площадь, ограниченная кривой распределения и осью абсцисс, равна 1.
Плотность вероятности нормального распределения выражается следующей формулой:
или
t – нормированное отклонение:
В это выражение входит две константы:
Это распределение характерно тем, что в соответствующих пределах заключено соответствующее количество всех частот:
Последний результат означает, что с вероятностью, близкой к единице (0,9973), случайная величина, подчиняющаяся закону нормального распределения, не выйдет за пределы заданного интервала. Это утверждение называют правилом трёх сигм. Вероятность того, что СВ примет значение за пределами заданного интервала, крайне мала:
(1- 0,9973=0,0027)
6.Понятие статистических таблиц, основные требования построения.