
- •1.Понятие и общее представление о статистике.
- •2.Предмет, метод и задачи статистики.
- •3.Сущность сводки и группировки статистических данных.
- •4.Виды группировок.
- •5.Статистические ряды распределения.
- •Закономерности распределения
- •Общие понятия о статистических таблицах
- •Виды статистических таблиц
- •Основные правила составления и анализа статистических таблиц
- •7.Статистическое наблюдение: формы, виды, и способы.
- •Этапы статистического наблюдения
- •Формы, виды и способы статистического исследования Формы статистического наблюдения
- •Виды статистического наблюдения
- •Виды статистического наблюдения по времени регистрации:
- •По полноте охвата единиц совокупности различают следующие виды статистического наблюдения:
- •Способы статистического наблюдения Способы получения статистической информации:
- •Ошибки статистического наблюдения
- •8.Современная организация государственной статистики России.
- •9.Статистическая отчётность.
- •10.Контроль материалов наблюдения.
- •11. Понятие, методы расчёта абсолютных и относительных величин.
- •12.Виды относительных величин.
- •13.Принципы построения относительных величин. Системы статистических показателей.
- •Система статистических показателей —
- •14.Графическое отображение статистических данных.
- •15.Понятие, сущность, значение средних величин.
- •16.Средняя арифметическая и её свойства.
- •17.Виды степенных средних.
- •18.Структурные средние величины.
- •19.Понятие и сущность рядов динамики в статистике
- •20. Показатели динамики
- •Примеры расчетов показателей динамики
- •Абсолютный прирост
- •Темп роста
- •Темп прироста
- •Абсолютное значение 1%-го прироста
- •21. Средние показатели рядов динамики Средний уровень ряда в статистике
- •Средний абсолютный прирост в задачах статистики
- •Средний темп роста
- •Средний темп прироста
- •22.Понятие и методология выравнивания рядов динамики. Приведение рядов динамики к одинаковому основанию
- •Методы выравнивания рядов динамики
- •Метод укрупнения интервалов времени (гр. 3).
- •Метод скользящей средней
- •23.Анализ сезонных колебаний
- •24.Аналитическое выравнивание Метод аналитического выравнивания
- •25.Методы прогнозирования в статистике
- •Тема 7. Статистические методы прогнозирования: экспоненциальное сглаживание и анализ временных рядов.
- •26.Показатели размера и интенсивности вариации
- •27.Показатели и формы распределения
- •28.Нормальное распределение и его свойства
- •29.Сущность, значение и категории выборочного наблюдения.
- •30. Виды и способы отбора.
- •31.Ошибки выборочного наблюдении
- •32.Определение объёма выборки.
- •33. Понятие корреляционно-регрессионного анализа в статистике.
- •34. Множественный корреляционно-регрессионный анализ.
- •35. Метод корреляционно-регрессионного анализа.
- •36.Понятие и основные элементы индексов.
- •37.Виды индексов.
- •38.Агрегатные индексы.
- •39.Индексный анализ при изучении экономических явлений.
- •Агрегатные индексы качественных показателей
- •Агрегатные индексы объемных показателей
- •Ряды агрегатных индексов с постоянными и переменными весами
- •Построение сводных территориальных индексов
- •Средние индексы
- •40.Средневзвешенные индексы.
33. Понятие корреляционно-регрессионного анализа в статистике.
Существующие между явлениями формы и виды связей весьма разнообразны по своей классификации. Предметом статистикиявляются только такие из них, которые имеют количественный характер и изучаются с помощью количественных методов. Рассмотрим метод корреляционно-регрессионного анализа, который является основным в изучении взаимосвязей явлений.
Данный метод содержит две свои составляющие части — корреляционный анализ и регрессионный анализ.Корреляционный анализ — это количественный метод определения тесноты и направления взаимосвязи между выборочными переменными величинами. Регрессионный анализ — это количественный метод определения вида математической функции в причинно-следственной зависимости между переменными величинами.
Для оценки силы связи в теории корреляции применяется шкала английского статистика Чеддока: слабая — от 0,1 до 0,3; умеренная — от 0,3 до 0,5; заметная — от 0,5 до 0,7; высокая — от 0,7 до 0,9; весьма высокая (сильная) — от 0,9 до 1,0. Она используется далее в примерах по теме.
34. Множественный корреляционно-регрессионный анализ.
Множественный корреляционный анализ позволяет исследователю прогнозировать уровень зависимой переменной, основываясь на возможных изменениях более чем одной независимой переменной. Множественная линейная связь между признаками выражается формулой
Система нормальных уравнений для определения неизвестных параметров будет следующей:
Коэффициенты bi называются коэффициентами условно-чистой регрессии и являются именованными числами, выраженными в разных единицах измерения, и поэтому несравнимы друг с другом. Коэффициенты условно-чистой регрессии обычно выражают в виде относительных сравнимых показателей, называемых коэффициентами эластичности (Эi). Они рассчитываются по формуле
При увеличении фактора Хi на 1% от его средней величины результативный признак увеличится на Эi процентов его средней величины, при условии что другие факторы, входящие в уравнение, остаются неизменными.
35. Метод корреляционно-регрессионного анализа.
Применяются для определения зависимости изменения цены от изменения технико-экономических параметров продукции, относящейся к данному ряду, построения и выравнивания ценностных соотношений:
где Х1, Х2,... Xn — параметры изделия. Количественная зависимость находится на основе метода регрессионного анализа. При этом могут быть получены различные уравнения регрессии: линейное, степенное, параболическое и т. д. Если цены на уже включенные в параметрический ряд изделия были получены таким же методом, то использовать данный способ нельзя, так как нарушается одно из условий применения регрессионного анализа, — условие независимости наблюдений. Тем не менее, данный метод можно применять для прогнозной цены. В качестве общего вывода по поводу применения параметрических методов следует отметить, что они крайне несовершенны и самостоятельно для формирования цены, как правило, не применяются. Основным недостатком использования данных методов является то, что они учитывают не все потребительские свойства изделий и полностью игнорируют спрос и предложение.