
- •1.Понятие и общее представление о статистике.
- •2.Предмет, метод и задачи статистики.
- •3.Сущность сводки и группировки статистических данных.
- •4.Виды группировок.
- •5.Статистические ряды распределения.
- •Закономерности распределения
- •Общие понятия о статистических таблицах
- •Виды статистических таблиц
- •Основные правила составления и анализа статистических таблиц
- •7.Статистическое наблюдение: формы, виды, и способы.
- •Этапы статистического наблюдения
- •Формы, виды и способы статистического исследования Формы статистического наблюдения
- •Виды статистического наблюдения
- •Виды статистического наблюдения по времени регистрации:
- •По полноте охвата единиц совокупности различают следующие виды статистического наблюдения:
- •Способы статистического наблюдения Способы получения статистической информации:
- •Ошибки статистического наблюдения
- •8.Современная организация государственной статистики России.
- •9.Статистическая отчётность.
- •10.Контроль материалов наблюдения.
- •11. Понятие, методы расчёта абсолютных и относительных величин.
- •12.Виды относительных величин.
- •13.Принципы построения относительных величин. Системы статистических показателей.
- •Система статистических показателей —
- •14.Графическое отображение статистических данных.
- •15.Понятие, сущность, значение средних величин.
- •16.Средняя арифметическая и её свойства.
- •17.Виды степенных средних.
- •18.Структурные средние величины.
- •19.Понятие и сущность рядов динамики в статистике
- •20. Показатели динамики
- •Примеры расчетов показателей динамики
- •Абсолютный прирост
- •Темп роста
- •Темп прироста
- •Абсолютное значение 1%-го прироста
- •21. Средние показатели рядов динамики Средний уровень ряда в статистике
- •Средний абсолютный прирост в задачах статистики
- •Средний темп роста
- •Средний темп прироста
- •22.Понятие и методология выравнивания рядов динамики. Приведение рядов динамики к одинаковому основанию
- •Методы выравнивания рядов динамики
- •Метод укрупнения интервалов времени (гр. 3).
- •Метод скользящей средней
- •23.Анализ сезонных колебаний
- •24.Аналитическое выравнивание Метод аналитического выравнивания
- •25.Методы прогнозирования в статистике
- •Тема 7. Статистические методы прогнозирования: экспоненциальное сглаживание и анализ временных рядов.
- •26.Показатели размера и интенсивности вариации
- •27.Показатели и формы распределения
- •28.Нормальное распределение и его свойства
- •29.Сущность, значение и категории выборочного наблюдения.
- •30. Виды и способы отбора.
- •31.Ошибки выборочного наблюдении
- •32.Определение объёма выборки.
- •33. Понятие корреляционно-регрессионного анализа в статистике.
- •34. Множественный корреляционно-регрессионный анализ.
- •35. Метод корреляционно-регрессионного анализа.
- •36.Понятие и основные элементы индексов.
- •37.Виды индексов.
- •38.Агрегатные индексы.
- •39.Индексный анализ при изучении экономических явлений.
- •Агрегатные индексы качественных показателей
- •Агрегатные индексы объемных показателей
- •Ряды агрегатных индексов с постоянными и переменными весами
- •Построение сводных территориальных индексов
- •Средние индексы
- •40.Средневзвешенные индексы.
23.Анализ сезонных колебаний
Для наглядности на основе индексов сезонности строится график сезонной волны (рис. 11.1). По оси абсцисс располагают месяцы, а по оси ординат — индексы сезонности в процентах (табл. 11.6, гр.7). Общая средняя месячная за все годы располагается на уровне 100%, а средние месячные индексы сезонности в виде точек наносят на поле графика в соответствии с принятым масштабом по оси ординат.
Точки соединяют между собой плавной ломаной линией.
В приведенном примере годовые объемы расхода горючего различаются незначительно. Если же в ряду динамики наряду с сезонными колебаниями имеется ярко выраженная тенденция роста (снижения), т.е. уровни в каждом последующем году систематически значительно возрастают (уменьшаются) по сравнению с уровнями предыдущего года, то более достоверные данные о размерах сезонности получим следующим образом:
для каждого года вычислим среднюю месячную величину;
исчислим индексы сезонности за каждый год путем деления данных за каждый месяц на среднюю месячную величину за этот год и умножения на 100%;
за весь период исчислим средние индексы сезонности по формуле средней арифметической простой из исчисленных за каждый год месячных индексов сезонности. Так, например, за январь средний индекс сезонности получим, если сложим январские значения индексов сезонности за все годы (допустим за три года) и разделим на число лет, т.е. на три. Аналогично исчислим за каждый месяц средние индексы сезонности.
Переход за каждый год от абсолютных месячных значений показателей к индексам сезонности позволяет устранить тенденцию роста (снижения) в ряду динамики и более точно измерить сезонные колебания.
В условиях рынка при заключении договоров на поставку различной продукции (сырья, материалов, электроэнергии, товаров) необходимо располагать информацией о сезонных потребностях в средствах производства, о спросе населения на отдельные виды товаров. Результаты исследования сезонных колебаний важны для эффективного управления экономическими процессами.
24.Аналитическое выравнивание Метод аналитического выравнивания
Метод аналитического выравнивания (гр.6 — 9) основан на вычислении значений выравненного ряда по соответствующим математическим формулам. В табл. 11.7 приведены вычисления по уравнению прямой линии:
Для определения параметров надо решить систему уравнений:
Необходимые величины для решения системы уравнений вычислены и приведены в таблице (см. гр.6 — 8), подставим их в уравнение:
В результате вычислений получаем: α= 87,96; b = 1,555.
Подставим значение параметров и получим уравнение прямой:
Для каждого года подставляем значение t и получаем уровни выравненного ряда (см. гр.9):
Рис. 11.2. Производство зерна в России за 1981-1982 гг.
В выравненном ряду происходит равномерное возрастание уровней ряда в среднем за год на 1,555 млн.т (значение параметра "b"). Метод основан на абстрагировании влияния всех остальных факторов, кроме основного.
Явления могут развиваться в динамике равномерно (рост или снижение). В этих случаях чаще всего подходит уравнение прямой линии. Если же развитие неравномерно, например, сначала очень медленный рост, а с определенного момента резкое возрастание, или, наоборот, сначала резкое снижение, а затем замедление темпов спада, то выравнивание надо выполнить по другим формулам (уравнение параболы, гиперболы и др.). При необходимости надо обратиться к учебникам по статистике или специальным монографиям, где более подробно изложены вопросы выбора формулы для адекватного отражения фактически сложившейся тенденции исследуемого ряда динамики.
Для наглядности показатели уровней фактического ряда динамики и выравненных рядов нанесем на график (рис. 11.2). Фактические данные представляет ломанная линия черного цвета, свидетельствующая о подъемах и снижениях объема производства зерна. Остальные линии на графике показывают, что применение метода скользящей средней (линия со срезанными концами) позволяет существенно выровнять уровни динамического ряда и соответственно на графике ломаную кривую линию сделать более плавной, сглаженной. Однако выравненные линии все же остаются кривыми линиями. Построенная на базе теоретических значений ряда, полученных по математическим формулам, линия строго соответствует прямой линии.
Каждый из трех рассмотренных методов имеет свои достоинства, но в большинстве случаев метод аналитического выравнивания предпочтителен. Однако его применение связано с большими вычислительными работами: решение системы уравнений; проверка обоснованности выбранной функции (формы связи); вычисление уровней выравненного ряда; построение графика, Для успешного выполнения таких работ целесообразно использовать компьютер и соответствующие программы.