- •Демультиплексоры, условные графические обозначения и применения.
- •Цап работающий по выходному току.
- •3. Полусумматор сумматор, его условное графическое обозначение и его применение.
- •4. Виды энергонезависимых запоминающих устройств.
- •6. Jk триггер
- •8. Одноразрядный сумматор.
- •9. Виды динамических запоминающих устройств
- •10. Шифраторы, условные графические обозначения и применения.
- •11. Ацп работающий на основе кодирования по разрядности.
- •12. Цифровой компаратор, его условное графическое обозначение и его применение.
- •13. Дешифраторы, условные графические обозначения и применения .
- •14. Ацп работающий последовательным подсчетом.
- •15. Виды микропроцессоров и их основные характеристики.
- •16. Виды запоминающих устройств и их особенности
- •17. Сравнительные характеристики сумматоров.
- •18. Двухтактовый rs-триггер, его условное графическое обозначение и применение.
- •19. Виды цап и апц, особенности их применения
- •20. Классификация триггеров, их применение в цифровых устройствах.
- •21. Виды счетчиков и область применения.
- •22. Регистр с последовательным приемом информации и параллельным распределением.
- •23. Реверсивный счетчик, условные графические обозначения и применения.
- •25. Триггеры
- •26. Мультиплексоры, условные графические обозначения и применения.
- •27. Асинхронный двоичный счетчик, его условное графическое обозначение и его применение.
- •28. Асинхронный rs триггер, его условное графическое обозначение и его применение.
- •29. Синхронный rs триггер, его условное графическое обозначение и его применение.
- •30. Архитектура микропроцессоров основные характеристики и особенности
- •31. Последовательный и параллельный интерфейс, их основные характеристики.
- •32. Энергозависимые запоминающие устройства. Флэш память, основные характеристики.
- •33. Сравнительные характеристики триггеров. Особенности применения триггеров.
- •34.Com и lpt порты, основные харакетристики, принципы работы.
- •35. Сравнительные характеристики сумматоров, Особенности применения триггеров.
- •36. Интегральные схемы, их применение в цифровых устройствах.
- •37. Принципы работы счетчиков, область применения.
19. Виды цап и апц, особенности их применения
Виды ЦАП:
Широтно-импульсный модулятор — простейший тип ЦАП. Стабильный источник тока или напряжения периодически включается на время, пропорциональное преобразуемому цифровому коду, далее полученная импульсная последовательность фильтруется аналоговым фильтром нижних частот. Этот используется для управления скоростью электромоторов, а также становится популярным в Hi-Fi-аудиотехнике;Дельта-сигма-ЦАП, основаны на изменяемой плотности импульсов.Быстродействие дельта-сигма ЦАП достигает сотни тысяч отсчетов в секунду, разрядность - до 24 бит. Для генерации сигнала с модулированной плотностью импульсов может быть использован простой дельта-сигма модулятор первого порядка или более высокого порядка как MASH. ЦАП взвешивающего типа - каждому биту преобразуемого двоичного кода соответствует резистор или источник тока, подключенный на общую точку суммирования. Сила тока источника пропорциональна весу бита, которому он соответствует. ЦАП лестничного типа. Применение одинаковых резисторов позволяет существенно улучшить точность по сравнению с обычным взвешивающим ЦАП, так как сравнительно просто изготовить набор прецизионных элементов с одинаковыми параметрами. ЦАП типа R-2R позволяют отодвинуть ограничения по разрядности. С лазерной подгонкой резисторов на одной подложке достигается точность 20-22 бита. Основное время на преобразование тратится в операционном усилителе. Быстродействие ЦАП очень высокое. Целесообразно применять данный вид ЦАП в любой вычислительной технике, требующей больших вычислительных мощностей.
Виды АЦП:
Параллельные АЦП прямого преобразования- самые быстрые, но обычно имеют разрешение не более 8 бит, так как влекут за собой большие аппаратные затраты. АЦП этого типа имеют очень большой размер кристалла микросхемы, высокую входную ёмкость, и могут выдавать кратковременные ошибки на выходе. Часто используются для видео или других высокочастотных сигналов, а также широко применяются в промышленности для отслеживания быстро изменяющихся процессов в реальном времени.Параллельно-последовательные АЦП прямого преобразования, частично последовательные АЦП, сохраняя высокое быстродействие позволяют значительно уменьшить количество компараторов, требующееся для преобразования аналогового сигнала в цифровой.Последовательные АЦП прямого преобразования, полностью последовательные АЦП, медленнее параллельных АЦП прямого преобразования и немного медленнее параллельно-последовательных АЦП прямого преобразования, но ещё больше уменьшают количество компараторов. АЦП находит широкое применение в системах управления, контроля и цифровой обработки сигналов.АЦП последовательногоприближениясодержит компаратор, вспомогательный ЦАП и регистр последовательного приближения. АЦП этого типа обладают одновременно высокой скоростью и хорошим разрешением. Однако при отсутствии устройства выборки хранения погрешность будет значительно больше. АЦП дифференциального кодированиясодержат реверсивный счётчик, код с которого поступает на вспомогательный ЦАП.Используются для оцифровки сигналов реального мира, так как большинство сигналов в физических системах не склонны к скачкообразным изменениям.АЦП сравнения с пилообразным сигналом содержат генератор пилообразного напряжения, компаратор и счётчик времени. Данный тип АЦП является наиболее простым по структуре и содержит минимальное число элементов. АЦП с уравновешиванием заряда содержат генератор стабильного тока, компаратор, интегратор тока, тактовый генератор и счётчик импульсов. Преобразование происходит в два этапа. Типичная разрядность АЦП этого типа составляет от 10 до 18 двоичных разрядов. Дополнительным достоинством является возможность построения преобразователей, нечувствительных к периодическим помехам. АЦП с уравновешиванием заряда используются в измерительных приборах высокой точности.
Сигма-дельта-АЦПпроизводит аналого-цифровое преобразование с частотой дискретизации, во много раз превышающей требуемую и путём фильтрации оставляет в сигнале только нужную спектральную полосу.
