
- •Демультиплексоры, условные графические обозначения и применения.
- •Цап работающий по выходному току.
- •3. Полусумматор сумматор, его условное графическое обозначение и его применение.
- •4. Виды энергонезависимых запоминающих устройств.
- •6. Jk триггер
- •8. Одноразрядный сумматор.
- •9. Виды динамических запоминающих устройств
- •10. Шифраторы, условные графические обозначения и применения.
- •11. Ацп работающий на основе кодирования по разрядности.
- •12. Цифровой компаратор, его условное графическое обозначение и его применение.
- •13. Дешифраторы, условные графические обозначения и применения .
- •14. Ацп работающий последовательным подсчетом.
- •15. Виды микропроцессоров и их основные характеристики.
- •16. Виды запоминающих устройств и их особенности
- •17. Сравнительные характеристики сумматоров.
- •18. Двухтактовый rs-триггер, его условное графическое обозначение и применение.
- •19. Виды цап и апц, особенности их применения
- •20. Классификация триггеров, их применение в цифровых устройствах.
- •21. Виды счетчиков и область применения.
- •22. Регистр с последовательным приемом информации и параллельным распределением.
- •23. Реверсивный счетчик, условные графические обозначения и применения.
- •25. Триггеры
- •26. Мультиплексоры, условные графические обозначения и применения.
- •27. Асинхронный двоичный счетчик, его условное графическое обозначение и его применение.
- •28. Асинхронный rs триггер, его условное графическое обозначение и его применение.
- •29. Синхронный rs триггер, его условное графическое обозначение и его применение.
- •30. Архитектура микропроцессоров основные характеристики и особенности
- •31. Последовательный и параллельный интерфейс, их основные характеристики.
- •32. Энергозависимые запоминающие устройства. Флэш память, основные характеристики.
- •33. Сравнительные характеристики триггеров. Особенности применения триггеров.
- •34.Com и lpt порты, основные харакетристики, принципы работы.
- •35. Сравнительные характеристики сумматоров, Особенности применения триггеров.
- •36. Интегральные схемы, их применение в цифровых устройствах.
- •37. Принципы работы счетчиков, область применения.
6. Jk триггер
JK триггер – не имеет состояния неопределенности или запрещенной комбинации входных сигналов,универсальный двухтактовый триггер. В общем и целом, входы J и К частично выполняют те же функции, что и D-вход. Но логика работы такого триггера более сложна. Если на J-вход подать сигнал логической единицы, а на К-вход — сигнал логического нуля, то по спаду тактового сигнала на входе С триггер установится в единичное состояние.
Если на J подать логический ноль, а на К — логическую единицу, то по спаду тактового сигнала триггер установится в нулевое состояние. Если на входы J и К одновременно подать логическую единицу, то по каждому спаду тактового импульса триггер будет переключаться в противоположное состояние. То есть, с единицы в ноль и с нуля в единицу. И, наконец, если и на J, и на К подать логический ноль, то триггер перестанет реагировать на тактовые импульсы, и его состояние будет оставаться неизменным.
8. Одноразрядный сумматор.
(ОС)
имеют три входа и обеспечивают
сложение разрядов слагаемы ai и bi с
переносом из предыдущего разряда pi-1.
В
каждом из разрядов производятся
однотипные действий: определяется
цифра суммы путем сложения по модулю
2 цифр слагаемых и поступающего в данный
разряд переноса и формируется перенос,
передаваемый в следующий разряд. Эти
действия реализуются одноразрядным
двоичным сумматором. Символическое
изображение такого сумматора показано
на рис. 9.61.а.
Он имеет три входа для подачи цифр
разрядов слагаемых
,
и
переноса
на
выходах формируются сумма
и
перенос
, предназначенный
для передачи в следующий разряд.
рис
9.61
В
одноразрядном сумматоре могут
предусматриваться входы для подачи
как прямых
,
,
,
так и инверсных значений
,
,
входных
переменных, а также выходы, на которых
формируются инверсные значения выходных
переменных. Логические выражения для
выходных величин
и
в
базисе И-ИЛИ-НЕ:
;
9. Виды динамических запоминающих устройств
Память компьютера – совокупность устройств для хранения информации. Память: внутренняя (оперативная, постоянная и кэш-память)и внешняя (жесткие диски, гибкие диски, сд и двд диски, магнитные ленты).
Поскольку в любой момент времени доступ может осуществляться к произвольно выбранной ячейке, то этот вид памяти также называют памятью с произвольной выборкой - RAM (Random Access Memory).
RAM: статическая (SRAM - Static RAM) и динамическая (DRAM - Dynamic RAM). В динамической памяти ячейки построены на основе областей с накоплением зарядов, занимающих гораздо меньшую площадь, нежели триггеры, и практически не потребляющих энергии при хранении. При записи бита в такую ячейку в ней формируется электрический заряд, который сохраняется в течение нескольких миллисекунд; для постоянного сохранения заряда ячейки необходимо регенерировать – перезаписывать содержимое для восстановления зарядов. Ячейки динамической памяти имеют большее время срабатывания (десятки-сотни наносекунд), но большую удельную плотность (порядка десятков Мбит на корпус) и меньшее энергопотребление. Динамическая память используется в качестве основной. Памяти называют также асинхронными - потому, что установка адреса, подача управляющих сигналов и чтение-запись данных могут выполняться в произвольные моменты времени. Существуют также синхронные виды памяти, получающие внешний синхросигнал, к импульсам которого жестко привязаны моменты подачи адресов и обмена данными; помимо экономии времени на охранных интервалах, они позволяют более полно использовать внутреннюю конвейеризацию и блочный доступ.