
- •Демультиплексоры, условные графические обозначения и применения.
- •Цап работающий по выходному току.
- •3. Полусумматор сумматор, его условное графическое обозначение и его применение.
- •4. Виды энергонезависимых запоминающих устройств.
- •6. Jk триггер
- •8. Одноразрядный сумматор.
- •9. Виды динамических запоминающих устройств
- •10. Шифраторы, условные графические обозначения и применения.
- •11. Ацп работающий на основе кодирования по разрядности.
- •12. Цифровой компаратор, его условное графическое обозначение и его применение.
- •13. Дешифраторы, условные графические обозначения и применения .
- •14. Ацп работающий последовательным подсчетом.
- •15. Виды микропроцессоров и их основные характеристики.
- •16. Виды запоминающих устройств и их особенности
- •17. Сравнительные характеристики сумматоров.
- •18. Двухтактовый rs-триггер, его условное графическое обозначение и применение.
- •19. Виды цап и апц, особенности их применения
- •20. Классификация триггеров, их применение в цифровых устройствах.
- •21. Виды счетчиков и область применения.
- •22. Регистр с последовательным приемом информации и параллельным распределением.
- •23. Реверсивный счетчик, условные графические обозначения и применения.
- •25. Триггеры
- •26. Мультиплексоры, условные графические обозначения и применения.
- •27. Асинхронный двоичный счетчик, его условное графическое обозначение и его применение.
- •28. Асинхронный rs триггер, его условное графическое обозначение и его применение.
- •29. Синхронный rs триггер, его условное графическое обозначение и его применение.
- •30. Архитектура микропроцессоров основные характеристики и особенности
- •31. Последовательный и параллельный интерфейс, их основные характеристики.
- •32. Энергозависимые запоминающие устройства. Флэш память, основные характеристики.
- •33. Сравнительные характеристики триггеров. Особенности применения триггеров.
- •34.Com и lpt порты, основные харакетристики, принципы работы.
- •35. Сравнительные характеристики сумматоров, Особенности применения триггеров.
- •36. Интегральные схемы, их применение в цифровых устройствах.
- •37. Принципы работы счетчиков, область применения.
Демультиплексоры, условные графические обозначения и применения.
Демультиплексор- это логическое устройство, предназначенное для переключения сигнала с одного информационного входа на один из информационных выходов. Таким образом, демультиплексор в функциональном отношении противоположен мультиплексору. На схемах демультиплексоры обозначают через DMX или DMS.В случае ТТЛ логики для коммутации каналов применяются логические элементы "И". В КМОП микросхемах широко применяются ключи на полевых транзисторах. Поэтому в них отсутствует понятие демультиплексора. Информационные входы и выход можно поменять местами, в результате чего мультиплексор может служить в качестве демультиплексора.Если между числом выходов и числом адресных входов действует соотношение n=2mдля двоичных демультиплексоров или n=3m для троичных демультиплексоров, то такой демультиплексор называют полным. Если n<2m для двоичныхдемультиплексоров или n<3m для троичных демультиплексоров, то демультиплексор называют неполным. Функции демультиплексоров сходны с функциями дешифраторов. Дешифратор можно рассматривать как демультиплексор, у которого информационный вход поддерживает напряжение выходов в активном состоянии, а адресные входы выполняют роль входов дешифратора. Поэтому в обозначении как дешифраторов, так и демультиплексоров в отечественных микросхемах используются одинаковые буквы - ИД. Демультиплексоры выполняют унарные (одновходовые, однооперандные) логические функции с n-арным выходом.
Условное
графическое изображение демультиплексора:
Цап работающий по выходному току.
ЦАП
характеризуется функцией преобразования.
Она связывает изменение цифрового кода
с изменением напряжения или тока.
Функция преобразования ЦАП выражается
следующим образом:
=
Функция преобразования ЦАП, гдеUвых- значение выходного напряжения, соответствующее цифровому коду Nвх, подаваемому на входы ЦАП.Uмах - максимальное выходное напряжение, соответствующее подаче на входы максимального кода Nмах. Время установления выходного напряжения или тока - интервал времени от момента заданного изменения кода на входе ЦАП до момента, при котором выходное напряжение или ток окончательно войдут в зону шириной младшего значащего разряда. Теоретически все ЦАП формируют выходной ток или напряжение пропорционально используемому опорному напряжению и входному цифровому коду
3. Полусумматор сумматор, его условное графическое обозначение и его применение.
Под комбинационным цифровым устройством (КЦУ) понимается цифровое устройство, обеспечивающее преобразование совокупности N входных цифровых сигналов в M выходных, при этом состояние выходных сигналов в данный момент времени определяется состоянием входных сигналов в этот же момент времени. Иными словами, КЦУ «не помнит» предыстории поступления сигналов на его входы. Правила функционирования КЦУ определяются реализуемыми ими функциями алгебры логики.
Сумматоры – это класс КЦУ, выполняющих операцию арифметического сложения двух двоичных n-разрядных чисел. Сумматоры бывают полными и неполными.
J |
K |
Qn |
Qn+1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |

