
- •«Тверской государственный технический университет»
- •2.1.1 Идеальный кристалл
- •2.1.2Реальный кристалл
- •2.2 Симметрия кристаллов
- •2.3 Типы кристаллических решеток
- •2.4 Колебания в кристаллах
- •3.Сингонии
- •4.Индексы кристаллографических граней
- •5.Строение твердых растворов
- •6.Аморфные вещества
- •6.1.Строение жидкостей и аморфных веществ.
- •7.Особенности строения полимерных фаз
- •8.Методы исследования внутреннего строения кристаллов
- •8.1.1Рентгеновские методы
- •8.1.2Нейтронография
- •8.1.2. Применение
- •8.2.1Оптическая спектроскопия
- •8.2.2Инфракрасная и рамановская спектроскопия
2.1.1 Идеальный кристалл
Является, по сути, математическим объектом, имеющим полную, свойственную ему симметрию, идеализированно ровные гладкие грани.[1]
2.1.2Реальный кристалл
Всегда содержит различные дефекты внутренней структуры решетки, искажения и неровности на гранях и имеет пониженную симметрию многогранника вследствие специфики условий роста, неоднородности питающей среды, повреждений и деформаций. Реальный кристалл не обязательно обладает кристаллографическими гранями и правильной формой, но у него сохраняется главное свойство — закономерное положение атомов в кристаллической решётке.[1]
2.2 Симметрия кристаллов
симметрия кристаллов свойство кристаллов совмещаться с собой при поворотах, отражениях, параллельных переносах либо при части или комбинации этих операций. Симметрия внешние. Формы (огранки) кристалла определяется симметрией его атомного строения, которая обусловливает также и симметрию физические. свойств кристалла.[2]
2.3 Типы кристаллических решеток
В зависимости от того, из каких частицы построена кристаллическая решетка и каков характер химической связи между ними, выделяют различные типы кристаллов. Существует ионные, ковалентные, металлические и молекулярные типов кристаллические решетки
Ионные кристаллы могут состоять из одноатомных ионов. Так построены кристаллы хлорида натрия, иодида калия, фторида кальция. В образовании ионных кристаллов многих солей участвуют одноатомные катионы металлов и многоатомные анионы, например, нитрат-ион NO3−, сульфат-ион SO42−, карбонат-ион CO32−.
В ионном кристалле невозможно выделить одиночные молекулы. Каждый катион притягивается к каждому аниону и отталкивается от других катионов. Весь кристалл можно считать огромной молекулой. Размерытакой молекулы не ограничены, поскольку она может расти, присоединяя новые катионы и анионы.
Рисунок 1 – катионы и анионы NaCl
Ионные кристаллы отличаются высокими температурами плавления. В расплавленном состоянии вещества, образующие ионные кристаллы, электропроводны. При растворении в воде эти вещества диссоциируют на катионы и анионы, и образующиеся растворы проводят электрический ток.
Атомные кристаллы состоят из отдельных атомов, объединенных ковалентными связями. Из простых веществ только бор и элементы IVA-группы имеют такие кристаллические решетки. Нередко соединения неметаллов друг с другом (например, диоксид кремния) также образуют атомные кристаллы. Они очень прочные и твердые, плохо проводят теплоту и электричество. Вещества, имеющие атомные кристаллические решетки, плавятся при высоких температурах. Они практически нерастворимы в каких-либо растворителях. Для них характерна низкая реакционная способность.
Молекулярные кристаллы построены из отдельных молекул, внутри которых атомы соединены ковалентными связями. Между молекулами действуют более слабые межмолекулярные силы. Они легко разрушаются, поэтому молекулярные кристаллы имеют низкие температуры плавления, малую твердость, высокую летучесть. Вещества, образующие молекулярные кристаллические решетки, не обладают электрической проводимостью, их растворы и расплавы также не проводят электрический ток.
Для металлов характерна металлическая кристаллическая решетка. В ней имеется металлическая связь между атомами. В металлических кристаллах ядра атомов расположены таким образом, чтобы их упаковка была как можно более плотной. Связь в таких кристаллах является делокализованной и распространяется на весь кристалл. Металлические кристаллы обладают высокой электрической проводимостью и теплопроводностью, металлическим блеском и непрозрачностью, легкой деформируемостью.[3]