
- •Резисторы;
- •Конденсаторы;
- •Трансформаторы;
- •Основные законы электричества
- •Движение электронов в ускоряющем электрическом поле
- •Движение электронов в тормозящем электрическом поле
- •Движение электронов в поперечном электрическом поле
- •Движение электронов в магнитных полях
- •Поток электронов и условное направление тока
- •Разность потенциалов
- •Напряжение на участке цепи
- •Закон Ома для участка цепи, не содержащего э.Д.С.
- •Закон Ома для участка цепи, содержащего э.Д.С.
- •Действие электрического тока
- •Фундаментальные зависимости
- •Законы Кирхгофа
- •Магнетизм и электромагнетизм
- •Электромагнитная индукция
- •Взаимоиндукция
- •Лекция 2 Переменный ток
- •Резистор в цепи переменного тока
- •Катушка в цепи переменного тока
- •Конденсатор в цепи переменного тока
- •Закон Ома для электрической цепи переменного тока
- •Импеданс
- •Мощность в цепи переменного тока
- •Постоянная составляющая в сигнале переменного тока
- •Среднеквадратическое значение (действующее) переменного тока
- •Соотношение между пиковыми и среднеквадратическими значениями
- •Среднеквадратическое значение сложных сигналов
- •Лекция 3 Форма сигнала
- •Период (Цикл)
- •Частота
- •Скважность
- •Соотношение между частотой и периодом
- •Звуковые волны
- •Гармоники
- •Высота тона
- •Гармонические составляющие прямоугольного сигнала
- •Гармонические составляющие пилообразного сигнала
Резистор в цепи переменного тока
Пусть цепь состоит из проводников с малой индуктивностью и большим сопротивлением R (из резисторов). Величина R называется активным сопротивлением. Сопротивление R в котором происходит превращение электрической энергии во внутреннюю энергию, называют активным сопротивлением.
Итак, в цепи имеется резистор, активное сопротивление которого R, а катушка индуктивности и конденсатор отсутствуют (рис. 1).
Рис. 1
Пусть напряжение на концах цепи меняется по гармоническому закону
U = Umsin ωt .
Как и в случае постоянного тока, мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения. Поэтому можно считать, что мгновенное значение силы тока определяется законом Ома:
I = U/R = Umsin ωt /R = Im/R.
Следовательно, в проводнике с активным сопротивлением колебания силы тока по фазе совпадают с колебаниями напряжения (рис. 2), а амплитуда силы тока равна амплитуде напряжения, деленной на сопротивление.
Рис. 2
При небольших значениях частоты переменного тока активное сопротивление проводника не зависит от частоты и практически совпадает с его электрическим сопротивлением в цепи постоянного тока.
Катушка в цепи переменного тока
Индуктивность влияет на силу переменного тока в цепи. Это можно обнаружить с помощью простого опыта. Составим цепь из катушки большой индуктивности и лампы накаливания (рис. 3). С помощью переключателя можно присоединять эту цепь либо к источнику постоянного напряжения, либо к источнику переменного напряжения. При этом постоянное напряжение и действующее значение переменного напряжения должны быть одинаковы. Опыт показывает, что лампа светится ярче при постоянном напряжении. Следовательно, действующее значение силы тока в рассматриваемой цепи меньше силы постоянного тока.
Рис. 3
Объясняется это самоиндукцией. Возникающее при нарастании силы тока электрическое поле тормозит движение электронов. Следовательно, максимальное значение силы переменного тока (его амплитуда) ограничивается индуктивностью L цепи и будет тем меньше, чем больше индуктивность и чем больше частота приложенного напряжения.
Пусть в цепь переменного тока включена идеальная катушка с электрическим сопротивлением провода, равным нулю (рис. 4). При изменениях силы тока по гармоническому закону
I = Imcos ωt.
в катушке возникает ЭДС самоиндукции
E = - L dI/dt = ImLω sin ωt,
где L - индуктивность катушки, ω - циклическая частота переменного тока.
Рис. 4
Так как электрическое сопротивление катушки равно нулю, то ЭДС самоиндукции в ней в любой момент времени равна по модулю и противоположна по знаку напряжению на концах катушки, созданному внешним генератором:
U = - E = - ImLωsin ωt .
Следовательно, при изменении силы тока в катушке по гармоническому закону напряжение на ее концах изменяется тоже по гармоническому закону, но со сдвигом фазы:
U = ImLωcos(ωt + π/2).
Следовательно, колебания напряжения на катушке индуктивности опережают колебания силы тока на π/2, или, что то же самое, колебания силы тока отстают по фазе от колебаний напряжения на π/2.
В момент, когда напряжение на катушке достигает максимума, сила тока равна нулю (рис. 5). В момент, когда напряжение становится равным нулю, сила тока максимальна по модулю.
Рис. 5
Произведение
ImLω
является амплитудой колебаний напряжения на катушке:
Um = ImLω.
Отношение амплитуды колебаний напряжения на катушке к амплитуде колебаний силы тока в ней называется индуктивным сопротивлением (обозначается XL):
XL = Um/Im = Lω.
Связь амплитуды колебаний напряжения на концах катушки с амплитудой колебаний силы тока в ней совпадает по форме с выражением закона Ома для участка цепи постоянного тока:
Im = Um/XL.
В отличие от электрического сопротивления проводника в цепи постоянного тока, индуктивное сопротивление не является постоянной величиной, характеризующей данную катушку. Оно прямо пропорционально частоте переменного тока. Поэтому амплитуда колебаний силы тока в катушке при постоянном значении амплитуды колебаний напряжения должна убывать, обратно пропорционально частоте. При ω = 0 индуктивное сопротивление равно нулю (XL = 0).
Зависимость амплитуды колебаний силы тока в катушке от частоты приложенного напряжения можно наблюдать в опыте с генератором переменного напряжения, частоту которого можно изменять. Опыт показывает, что увеличение в два раза частоты переменного напряжения приводит к уменьшению в два раза амплитуды колебаний силы тока через катушку.