
- •15)Коррозия металлов
- •16. Способы защиты металлов от коррозии
- •19)Основы обработки металлов давлением
- •20. Прокатное производство
- •21. Штамповка
- •22. Способ производства проволоки
- •23. Физические основы сварки
- •24. Электродуговая сварка
- •25. Контактная сварка
- •26. Способы обработки резанием
- •27. Виды режущего инструмента
- •30. Углеродистая инструментальная сталь
- •31. Легированная конструкционная сталь
- •32. Легированная инструментальная сталь
- •34. Проводниковые материалы с низким удельным сопротивлением
- •35. Проводниковые материалы с высоким удельным сопротивлением
- •37. Газообразные диэлектрики
- •38. Пробой газообразных диэлектриков
- •39. Жидкие диэлектрики
- •40. Пробой жидких диэлектриков
- •42. Твердые диэлектрики
- •43. Механические свойства твердых диэлектриков
- •44. Теплостойкость диэлектриков
- •45. Нагревостойкость диэлектриков
- •47. Электрический пробой диэлектриков
- •48. Электротепловой пробой диэлектриков
- •49. Диэлектрическая проницаемость твердых диэлектриков
- •50. Термопластичные полимеры
- •53. Композиционные диэлектрики
- •54. Состав резины
- •55. Применение резины
- •58. Компаунды
- •59. Применение компаундов
- •61. Слюда, ее виды и применение
- •62. Стекло, его состав и применение
- •65. Состав керамики. Способы получения электротехнических деталей из керамики
- •67. Магнитомягкие материалы
- •72. Магнитовтердые материалы
- •75. Магнитотвердые стали и сплавы
58. Компаунды
Компаунд — термоактивная, термопластическая полимерная смола (отверждаемая в естественных условиях) и эластомерные материалы с наполнителями и (или) добавками или без них после затвердевания. Используется в качестве электроизоляционного материала и как средство взрывозащиты.
59. Применение компаундов
Они позволяют решать такие задачи, как: обезжиривание, защита от коррозии, консервация поверхности, осветление, очистка, травление. Одновременно применение компаундов увеличивает срок службы абразивных тел, препятствуя их засаливанию, и обеспечивают неизменное качество обработки.
61. Слюда, ее виды и применение
Слюды — группа минералов-алюмосиликатов, обладающих слоистой структурой и имеющих общую формулу R1(R2)3 [AlSi3O10](OH, F)2, где R1 = К, Na; R2 = Al, Mg, Fe, Li. Слюда — один из наиболее распространённых породообразующих минералов интрузивных, метаморфических и осадочных горных пород, а также важное полезное ископаемое.
Виды
ванадиевая слюда — роскоэлит
хромовая слюда — хромовый мусковит, или фуксит,
Существует три вида промышленных слюд:
листовая слюда;
мелкая слюда и скрап (отходы от производства листовой слюды);
вспучивающаяся слюда (например, вермикулит).
Приминения
Слюдяная изоляция используется в мощных генераторах и других высоковольтных машинах, в слюдяных конденсаторах, радиолампах и нагревательных приборах.
62. Стекло, его состав и применение
Стекло́ — вещество и материал, один из самых древних
Физико-химически — твёрдое тело, структурно — аморфно, изотропно; все виды стёкол при формировании преобразуются в агрегатном состоянии — от чрезвычайной вязкости жидкого до так называемого стеклообразного — в процессе остывания со скоростью, достаточной для предотвращения кристаллизации расплавов,
Термин «строение стекла» подразумевает описание двух тесно связанных, но рассматриваемых зачастую независимо аспектов — геометрии взаимного расположения атомов и ионов, составляющих стекло и характера химических связей между образующими его частицами. Как уже было отмечено, структура стекла соответствует структуре жидкости в интервале стеклования.
СВОЙСТВА
Широкая употребительность стекла обусловлена неповторимым и своеобразным сочетанием физических и химических свойств, не свойственным никакому другому материалу. Например, без стекла, вероятно, не существовало бы обычного электрического освещения в том виде, в каком мы его знаем.
65. Состав керамики. Способы получения электротехнических деталей из керамики
Керамика (др.-греч. κέραμος — глина) — изделия из неорганических материалов (например, глины) и их смесей с минеральными добавками, изготавливаемые под воздействием высокой температуры с последующим охлаждением.
Получение керамики. По строению керамика представляет собой сложную систему состоящую из трех основных фаз: кристаллической, стекловидной и газовой. Кристаллическая фаза (основная) представляет собой химические соединения или твердые растворы, она определяет характерные свойства керамического материала; стекловидная фаза находится в керамическом материале в виде прослоек между кристаллической составляющей или обособленных микрочастиц и выполняет роль связующего вещества; газовая фаза представляет собой газы, содержащиеся в порах керамики. Поры ухудшают свойства керамики, особенно при повышенной влажности.