Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
6,7,9.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
180.73 Кб
Скачать

7 Вопрос

Волновые свойства света наиболее отчетливо обнаруживают себя в интерференции и дифракции. Эти явления характерны для волн любой природы и сравнительно просто наблюдаются на опыте для волн на поверхности воды или для звуковых волн. Наблюдать же интерференцию и дифракцию световых волн можно лишь при определенных условиях. Свет, испускаемый обычными (нелазерными) источниками, не бывает строго монохроматическим. Поэтому для наблюдения интерференции свет от одного источника нужно разделить на два пучка и затем наложить их друг на друга.

В методе деления волнового фронта пучок пропускается, например, через два близко расположенных отверстия в непрозрачном экране (опыт Юнга). Такой метод пригоден лишь при достаточно малых размерах источника.

      В другом методе пучок делится на одной или нескольких частично отражающих, частично пропускающих поверхностях. Этот метод деления амплитуды может применяться и при протяженных источниках. Он обеспечивает большую интенсивность и лежит в основе действия разнообразных интерферометров. В зависимости от числа интерферирующих пучков различают двулучевые и многолучевые интерферометры. Они имеют важные практические применения в технике, метрологии и спектроскопии.

Следовательно, при наложении двух (или нескольких) когерентных световых волн происходит пространственное перераспределение светового потока, в результате чего в одних местах возникают максимумы, а в других – минимумы интенсивности. Это явление называется интерференцией света.

8 Вопрос

. Расчет интерференционной картины для двух источников можно провести используя две узкие параллельные щели, расположенные достаточно близко друг к другу.

Щели S1 и S2 находятся на расстоянии d друг от друга и являются когерентными источниками света. Интерференция наблюдается в произвольной точке А экрана, параллельного обеим щелям и расположенного от них на расстоянии l, причем l>>d. Начало отсчета выбрано в точке О, симметричной относительно щелей. Интенсивность в любой точке А экрана, лежащей на расстоянии х от О, определяется оптической разностью хода

(разностью оптических длин проходимых волнами путей). Из рисунка имеем:  откуда  или . Из условия l>>d следует, чтопоэтому . Подставив найденное значение в условия интерференционного максимума и минимума: и  , получим, что максимумы интенсивности будут наблюдаться при , а минимумы — при . Расстояние между двумя соседними максимумами (или минимумами) называемое шириной интерференционной полосы равно: . не зависит от порядка интерферен­ции (величины m) и является постоянной для . обратно пропорционально d, след. при большом расстоянии между источниками, например,

, отдельные полосы становятся неразличимыми. Из двух предпоследних формул следует так же, что интерференционная картина , создаваемая на экране двумя когерентными источниками света, представляет собой чередование светлых и темных полос, параллельных друг другу. Главный максимум, соответствующий m=0, проходит через точку О. Вверх и вниз от него, на равных расстояниях располагаются максимумы (минимумы) первого (m=1) и других порядков. Описанная картина справедлива только лишь при освещении монохроматическим светом. Если использовать белый свет, то интерференционные максимумы для каждой длины волны будут смещены друг относительно друга и иметь вид радужных полос. Только для m=0 максимумы всех длин волн совпадают, а в середине экрана будет наблюдаться белая полоса.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]