Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГГД.doc
Скачиваний:
18
Добавлен:
01.03.2025
Размер:
282.11 Кб
Скачать

3.3. Уравнение Бернулли для реальной жидкости

Уравнение Бернулли для потока реальной жидкости несколько отличается от уравнения

Дело в том, что при движении реальной вязкой жидкости возникают силы трения, на преодоление которых жидкость затрачивает энергию. В результате полная удельная энергия жидкости в сечении 1-1 будет больше полной удельной энергии в сечении 2-2 на величину потерянной энергии (рис.3.6).

Рис.3.6. Схема к выводу уравнения Бернулли для реальной жидкости

Потерянная энергия или потерянный напор обозначаются   и имеют также линейную размерность.

Уравнение Бернулли для реальной жидкости будет иметь вид:

Из рис.3.6 видно, что по мере движения жидкости от сечения 1-1 до сечения 2-2 потерянный напор все время увеличивается (потерянный напор выделен вертикальной штриховкой). Таким образом, уровень первоначальной энергии, которой обладает жидкость в первом сечении, для второго сечения будет складываться из четырех составляющих: геометрической высоты, пьезометрической высоты, скоростной высоты и потерянного напора между сечениями 1-1 и 2-2.

Кроме этого в уравнении появились еще два коэффициента α1 и α2, которые называются коэффициентами Кориолиса и зависят от режима течения жидкости ( α = 2 для ламинарного режима, α = 1 для турбулентного режима ).

Потерянная высота   складывается из линейных потерь, вызванных силой трения между слоями жидкости, и потерь, вызванных местными сопротивлениями (изменениями конфигурации потока)

 = hлин + hмест

С помощью уравнения Бернулли решается большинство задач практической гидравлики. Для этого выбирают два сечения по длине потока, таким образом, чтобы для одного из них были известны величины Р, ρ, g, а для другого сечения одна или величины подлежали определению. При двух неизвестных для второго сечения используют уравнение постоянства расхода жидкости υ1ω 1 = υ2ω2.

9.Трубка Пито-Прандтля

Трубка Пито-Прандтля представляет собой две Г-образные трубки, при этом одна трубка размещена внутри другой. Внутренние полости трубок не сообщаются между собой. Трубка вставляется в трубопровод, изгибом параллельно потоку и желательно соосно оси трубопровода. Внутренняя трубка имеет торцевое отверстие, в результате чего воспринимает полное давление в трубопроводе равное сумме динамического (зависимого от скорости потока) и статического давления трубопровода. Наружная трубка имеет отверстия на боковой поверхности и служит для отбора только статического давления. Довольно часто на производстве трубку Пито-Прандтля называют просто трубкой Пито. Это неправильно, так как с помощью трубки Пито невозможно измерить перепад давлений, а значит и расход, так как она не измеряет статическое давление в трубопроводе отдельно от динамического. 

Давление Рвнутр, воспринимаемое внутренней трубкой через отверстие в торце, равно сумме динамического Рдин и статического Рст давлений среды:

Динамическое давление зависит от плотности измеряемого вещества ρ и скорости потока вещества V в трубопроводе. Перепад давлений, измеренный трубкой Пито-Прандтля, будет равен:

Трубка Пито-Прандтля достаточно редко применяется в системах технического учета потребления энергоносителей. В коммерческих узлах учета она не применяется вовсе. Это связано с высокой погрешностью измерения, достигающей 5% и узким диапазоном измеряемых расходов (в лучшем случае минимально возможный измеряемый расход связан с максимальным измеряемым расходом соотношением 1:10). Кроме того, нижняя граница скорости потока достаточно высока. Чаще всего трубки Пито-Прандтля используют для измерения расхода вентиляторного воздуха (стенды нагрева, печи) где не требуется высокой точности измерения и рабочий диапазон изменения расхода воздуха довольно узок. Кроме того трубопроводы подачи вентиляторного воздуха могут иметь весьма внушительные размеры – до 1,5 метров в диаметре. Применение в этом случае расходомеров другого типа влечет за собой значительные материальные затраты и сложность монтажа и последующего обслуживания.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]