
- •2 Завдання
- •Електризація тіл. Види і взаємодія зарядів. Закон Кулона.
- •Закон Ома для ділянки кола.
- •Закон Ома для повного кола з ерс.
- •Послідовне з’єднання резисторів.
- •Паралельне з’єднання резисторів.
- •Закони Кірхгофа для постійного струму.
- •Самостійний розряд. Види самостійних розрядів.
- •Індуктивність у колі змінного струму.
- •Ємність у колі змінного струму.
- •Дія магнітного поля на провідник зі струмом (сила Ампера).
- •Дія магнітного поля на електричний заряд (сила Лоренца).
- •Електромагнітні коливання та хвилі.
- •Тверде тіло. Види зв’язку атомів у твердому тілі.
- •Порівняльна характеристика провідності діелектриків провідників, напівпровідників.
- •Принцип роботи напівпровідникового діода.
- •Взаємодія між зарядами. Закон Кулона. Формула
- •Закон Ома для кола з ерс. Закон Ома для ділянки кола.
- •Опір. Провідність резистора (провідника). Залежність опору від температури (формула).
- •Електричний струм в різних середовищах.
- •Електропровідність твердих тіл: провідники, діелектрики, напівпровідники.
- •Напівпровідникові діоди і транзистори.
- •Явище самоіндукції та ерс самоіндукції. Індуктивність.
- •Активний та реактивний опір.
- •Миттєве значення напруги, сили струму та е.Р.С.
- •Призначення, будова і принцип дії трансформатора.
- •1 Завдання
- •Електричне поле. Силові лінії електричного поля. Електризація тіл. Взаємодія між зарядами.
- •Магнітне поле.
- •Напруженість мп.
- •Діелектрична проникність середовища.
- •Магнітний потік.
- •Трансформатор та індукційна котушка
- •Відкритий коливальний контур.
- •Напруженість еп в точці на відстані.
- •Силові лінії електричного поля . Напруженість електричного поля. Формула. Одиниці вимірювання.
- •Потенціал. Різниця потенціалів. Напруга. Одиниці вимірювання.
- •Опір. Залежність опору від довжини та поперечного перерізу провідника.
- •Конденсатори. Електроємність. Види конденсаторів.
- •Сила струму. Електричний струм. Прилад для вимірювання сили струму.
- •Е.Р.С. Джерела струму. Закон Ома для повного кола з е.Р.С.
- •Робота і потужність постійного струму (формула).
- •Електроліт. Явище електролізу.
- •Індуктивний опір.
- •Ємнісний опір.
- •Електричний струм. Взаємодія двох точкових зарядів.
- •Послідовне з’єднання конденсаторів.
- •Паралельне з’єднання конденсаторів.
- •Анод та катод. Їх використання.
- •Природа діамагнетиків, парамагнетиків, феромагнетиків.
- •Постійний електричний струм. Робота і потужність.
- •Вимушені коливання.
- •Вільні коливання.
Дія магнітного поля на провідник зі струмом (сила Ампера).
Сила Ампера залежить від сили струму
, елемента (частини) довжини провідника
, кута між напрямом струму і напрямом ліній магнітного поля
та магнітної індукції
, і задається формулою
У векторній формі сила Ампера записується
.
Якщо кут між векторами
i
менший, ніж 90°, то:
Якщо кут між векторами i дорівнює 90°, тоді sin90°=1, звідси:
.
Магнітна індукція у просторі навколо провідника зі струмом визначається законом Біо-Савара.
Дія магнітного поля на електричний заряд (сила Лоренца).
Си́ла Ло́ренца — сила, що діє на електричний заряд, який перебуває у електромагнітному полі.
.
Тут
— сила,
— величина заряду,
— напруженість електричного поля,
— швидкість руху заряду, — вектор магнітної індукції[1]. Іноді силою Лоренца називають лише другу складову цього виразу — силу, яка діє на заряд, що рухається, з боку магнітного поля
(
).
Електричне поле діє на заряд із силою, направленою вздовж силових ліній поля. Магнітне поле діє лише на рухомі заряди. Сила дії магнітного поля перпендикулярна до силових ліній поля й до швидкості руху заряду.
Названа на честь Гендрика Лоренца, який розробив це поняття 1895 року.
Електромагнітні коливання та хвилі.
Електромагнітні хвилі описуються загальними для електромагнітних явищ рівняннями Максвелла. Навіть у випадку відсутності у просторі електричних зарядів і струміврівняння Максвелла мають відмінні від нуля розв'язки. Ці розв'язки описують електромагнітні хвилі.
У випадку відсутності зарядів і струмів рівняння Максвелла набирають наступного виду:
,
,
,
.
Застосовуючи операцію rot до перших двох рівнянь можна отримати окремі рівняння для визначення напруженості електричного і магнітного полів
Ці рівняння мають типову форму хвильових рівнянь. Їхніми розв'язками є суперпозиція виразів наступного типу
,
,
де
- певний вектор, який називається хвильовим вектором, ω - число, яке називається циклічною частотою, φ - фаза. Величини
та
є амплітудами електричної та магнітної компоненти електромагнітної хвилі. Вони взаємно перпендикулярні й рівні за абсолютною величиною. Фізична інтерпретація кожної із введених величин дається нижче.
Тверде тіло. Види зв’язку атомів у твердому тілі.
Тверде тіло — агрегатний стан речовини, що характеризується стабільністю форми на відміну від інших агрегатних станів рідини та газу. Атоми твердих тіл більшість часу проводять в околі певних рівноважних положень, здійснюючи тільки незначні теплові коливання.
Порівняльна характеристика провідності діелектриків провідників, напівпровідників.
Провідник — матеріал, що проводить тепло або електрику (на противагу діелектрику). Для провідника характерні високі тепло- абоелектропровідність. Найчастіше провідник є речовиною, яка має багато вільних електронів (метали). Діелектрики, типу скла чи кераміки, мають мало вільних електронів. Вуглець — єдиний неметал, що є (у деяких формах) провідником тепла й електрики. Речовини типу кремнію і германію, електропровідність яких має проміжне значення у порівнянні з провідниками й діелектриками називаються напівпровідниками. Їх електропровідність може змінюватися у широкому діапазоні під впливом тепла, світла і напруги.
Напівпровідни́к — матеріал, електропровідність якого має проміжне значення між провідностями провідника та діелектрика. Відрізняються від провідників сильною залежністю питомої провідності від концентрації домішок, температури і різних видів випромінювання. Основною властивістю цих матеріалів є збільшення електричної провідності з ростом температури.
Діелектрики — це матеріали, в яких заряди не можуть пересуватися з однієї частини тіла в іншу (зв'язані заряди). Зв'язаними зарядами є заряди, що входять в складатомів або молекул діелектрика, заряди іонів, в кристалах з іонною ґраткою.