Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Архитектура компьютера.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
293.38 Кб
Скачать

Вопрос 4)

В литературе часто используется та или иная схема классификации компьютерных

архитектур и одной из наиболее популярных является таксономия Флинна. В ее основу положено описанш работы компьютера с потоком команд и потоком данных. По Флинну принято классифицировать все возможные архитектуры компьютеров на четыре категории:

1. SISD (Single Instruction Stream - Single Data Stream) - один поток команд и один поток данных;

2. SIMD (Single Instruction Stream - Multiple Data Stream) - один поток команд и множество потоков данных;

3. MISD (Multiple Instruction Stream - Single Data Stream) - множество потоков команд и один поток данных;

4. MIMD (Multiple Instruction Stream - Multiple Data Stream) - множество потоков команд и множество потоков данных.

SISD компьютеры

SISD компьютеры это обычные, "традиционные" последовательные компьютеры, в которых в каждый момент времени выполняется лишь одна операция над одним элементом данных (числовым или каким-либо другим значением). Большинство современных персональных ЭВМ, например, попадает именно в эту категорию. Иногда сюда относят и некоторые типы векторных компьютеров, это зависит от того, что понимать под потоком данных. SIMD компьютеры

SIMD компьютеры состоят из одного командного процессора (управляющего модуля), называемого контроллером, и нескольких модулей обработки данных, называемых процессорными элементами. Управляющий модуль принимает, анализирует и выполняет команды. Если в команде встречаются данные, контроллер рассылает на все процессорные элементы команду, и эта команда выполняется на нескольких или на всех процессорных элементах. Каждый процессорный элемент имеет свою собственную память для хранения данных. Одним из преимуществ данной архитектуры считается то, что в этом случае более эффективно реализована логика вычислений. До половины логических инструкций обычного процессора связано с управлением выполнением машинных команд, а остальная их часть относится к работе с внутренней памятью процессора и выполнению арифметических операций. В SIMD компьютере управление выполняется контроллером, а "арифметика" отдана процессорным элементам. Векторные компьютеры представляют собой пример архитектуры SIMD.

MISD компьютеры Вычислительных машин такого класса практически нет и трудно привести пример их успешной реализации. Один из немногих - систолический массив процессоров, в котором процессоры находятся в узлах регулярной решетки, роль ребер которой играют межпроцессорные соединения. Все процессорные элементы управляются общим тактовым генератором. В каждом цикле •работы каждый процессорный элемент получает данные от своих соседей, выполняет одну команду и передает результат соседям.

MIMD компьютеры Эта категория архитектур вычислительных машин наиболее богата, если иметь в виду примеры ее успешных реализаций. В нее попадают симметричные параллельные вычислительные системы, рабочие станции с несколькими процессорами, кластеры рабочих станций и т.д. Уже довольно давно появились компьютеры с несколькими независимыми процессорами, но вначале на таких компьютерах был реализован только параллелизм заданий, то есть на разных процессорах одновременно выполнялись разные и независимые программы. Разработке первых компьютеров для параллельных вычислений были посвящены проекты под условным названием СМ* и С.ММР в университете Карнеги (США). Технической базой для этих проектов были процессоры DEC PDP-11. В начале 90-х годов именно MIMD компьютеры выходят в лидеры на рынке высокопроизводительных вычислительных систем. Такой тип машин отличается не только производительностью, но и более высокой надежностью. Действительно, при отказе одного процессора вся систем остается работоспособной (правда с более низкой производительностью). Однако при такой организации возникают проблемы организации управления рри решении одной задачи.

// ЭВМ Предельное быстродействие параллельных программ

При работе на параллельных ЭВМ пользователь имеет возможность запускать программу или на всех процессорах сразу, или на ограниченном их числе. Поскольку все процессоры в параллельных ЭВМ одинаковые (в составе параллельной ЭВМ могут работать еще и специализированные процессоры ввода/вывода, но на них счет не проводится), то можно ожидать, что программа будет выполняться во столько раз быстрее, сколько процессоров будут проводить вычисления.

Вопрос 5) см-воярое~3

Шинная организация является простейшей формой организации ЭВМ. В соответствии с приведенными выше принципами фон-Неймана подобная ЭВМ имеет в своем составе следующие функциональные блоки (рис.4.2). Центральный процессор (ЦП) - функциональная часть ЭВМ, выполняющая основные операции по обработке данных и управлению работой других блоков. Это наиболее сложный компонент ЭВМ как с точки зрения электроники, так и с точки зрения функциональных возможностей. Центральный процессор состоит из следующих взаимосвязанны? составных элементов: арифметико-логического устройства, устройства управления и регистров. Системная магистраль является узким местом ЭВМ, так как все устройства, подключенные к ней, конкурируют за возможность передавать свои данные по ее шинам.

Системная магистраль - это среда передачи сигналов управления, адресов, данных, к которой параллельно и одновременно может подключаться несколько компонентов вычислительной системы. Физически системная магистраль представляет собой параллельные проводники на материнской плате, которые называются линиями. Но это еще и алгоритмы, по которым передаются сигналы, правила интерпретации сигналов, дисциплины обслуживания запросов, специальные микросхемы, обеспечивающие эту работу. Весь этот комплекс образует понятие интерфейс системной магистрали или стандарт обмена.

Исторически все интерфейсы СМ ведут свою родословную от стандарта IBM MULTGBUS, для которого фирмой был разработан комплект микросхем (chipset). Этот стандарт мог обслуживать передачу 8- и 16-битовых данных, работать в мультипроцессорном режиме с несколькими ведущими устройствами. Понятие "ведущее/ведомое устройство" могло динамически переопределяться с помощью сигналов управления (например, контроллер ПДП в режиме программирования - ведомое устройство, а в активном режиме -ведущее). Для этого стандарта характерно наличие следующих линий: 20 линий адресов, 16 линий данных, 50 управляющих и служебных линий.

Для IBM PS-2 разработанстандарт Микроканал - MCA (Micro Channel Architecture) в 1987 г. В нем 24-разрядная шина адреса. Шина данных увеличена до 32 бит. Отказались от перемычек и переключателей, определяющих конфигурацию технических средств, и ввели CMOS-память (Complementary Metal Oxyde Semicondactor), позволяющую хранить эту информацию и при отключении питания. Все оборудование, подключаемое к системной магистрали, содержит специальные регистры POS (Programmable Option Select), позволяющие конфигурировать систему программным путем. При тактовой частоте 10 МГц скорость передачи данных составляла 20 Мбайт/с.

Стандарт EISA (Extended ISA) - это жестко стандартизованное расширение ISA до 32 бит. Конструктивно совместима с ISA-адаптерами внешних устройств. Предназначена для многозадачных систем, файл-серверов и систем, в которых требуется высокоэффективное расширение ввода-вывода. При тактовой частоте 8.33 МГц скорость передачи данных составляла 33 Мбайт/с.

Стандарт VESA (VESA Lokal Bas или VLB) разработан Ассоциацией стандартов видеоданных (Video Electronics Standart Association) как расширение стандарта ISA для обмена видеоданными с адаптером SVGA. Обмен данными по этому стандарту ведется под управлением микросхем, расположенных на карте, устанавливаемой в специальный слот (разъем) расширения VLB и соединяемой с СМ через стандартный слот расширения. В отличие от стандартных слотов расширения слот VLB связан с микропроцессором напрямую, минуя системную магистраль. Карта VLB, работая совместно с системной магистралью, реализующей стандарт ISA, обеспечивает 32-разрядную передачу данных с тактовой частотой микропроцессора (но не более 40 - 50 МГц). В стандартные слоты материнской платы с интерфейсом VLB устанавливаются карты расширения с интерфейсом ISA. Производительность стандарта VLB достигает 132 Мбайт/с.

Стандарт PCI (Peripheral Component mterconnect) разработан фирмой Intel для ЭВМ с МП Pentium. Это не развитие предыдущих стандартов, а совершенно новая разработка. Системная магистраль i соответствии с этим стандартом работает синхронно с тактом МП и осуществляет связь междулокальной шиной МП и интерфейсом ISA, EISA или MCA. Но поскольку для этого интерфейса используются микросхемы, выпускаемые другими фирмами (Saturn - для 486, Mercury, Neptune, Triton - для Pentium), скорость работы СМ реально'составляет 30-40 Мбайт/с при теоретически возможной 132/ 264 Мбайт/с. Стандарт PCI разрабатывался как процессорно-независимый интерфейс. Помимо Pentium с этим интерфейсом могут работать и МП других фирм (Alpha корпорации DEC, MIPS R4400 и Power PC фирм Motorola, Apple и IBM). Стандарт PCI позволяет реализовать дополнительные функции: автоматическую конфигурацию периферийных устройств (которая позволяет пользователю устанавливать дополнительные платы, не задумываясь над распределением прерываний, каналов ПДП и адресного пространства); работу при пониженном напряжении питания; возможность работы с 64-разрядным интерфейсом. "Слоевая" структура интерфейса PCI снижает электрическую нагрузку на МП и позволяет одновременно управлять шестью периферийными устройствами, подключенными к СМ. Стандарт PCI позволяет использовать "мосты" (Bridges) для организации связи с другими стандартами (например, PCI to ISA Bridge).

Стандарт USB (Universal Serial Bus) - универсальный последовательный интерфейс, обеспечивающий обмен со скоростью 12 Мбайт/с и подключение до 127 устройств. Стандарт PCMCIA (Personal Computer Memory Card International Association) - интерфейс блокнотных ПЭВМ для подключения расширителей памяти, модемов, контроллеров дисков и стриммеров, сетевых адаптеров и др. Системная магистраль, выполненная по этому стандарту, имеет минимальное энергопотребление, ШД - на 16 линий, ТТТА - на 24 линии. Системная шина процессора предназначена для обмена информацией микропроцессора с любым* внутренними устройствами микропроцессорной системы (контроллера или компьютера). В качестве обязательных устройств, которые входят в состав любой микропроцессорной системы, можно назвать ОЗУ, ПЗУ, таймер и порты ввода-вывода. В состав системной шины в зависимое™ от типа процессора входит одна или несколько шин адреса, одна или несколько шин данных и шина управления. Несколько шин данных и адреса применяется для увеличения производительности процессора и используется только в сигнальных процессорах. В универсальных процессорах и контроллерах обычно применяется одна шина адреса и одна шина данных. В понятие шины вкладывают разное значение при рассмотрении различных вопросов. В простейшем случае под понятием шина подразумевают параллельно проложенные провода, по которым передаётся двоичная информация. При этом по каждому проводу передаётся отдельный двоичный разряд. Информация может передаваться в одном направлении, как, например, для шины адреса или шины управления, или в различных направлениях (для шины данных). По шине .данных информация передаётся либо к процессору, либо от процессора в зависимости от операции записи или чтения, которую в данный момент осуществляет процессор. В любом случае все сигналы, необходимые для работы системной шины формируются микросхемой процессора как это рассматривалось при изучении блока обработки данных. Иногда для увеличения скорости обработки информации функции управления системной шины берёт на себя отдельная микросхема (например контроллер прямого доступа к памяти или сопроцессор). Арбитраж доступа к системной шине при этом осуществляет контроллер системной шины (в простейшем случае достаточно сигнала занятости шины). В некоторых случаях в понятие шина дополнительш включают требования по уровням напряжения, которыми представляются нули и единицы, передаваемые по её проводам. В состав требований могут быть включены длительности фронтов передаваемых сигналов, типы используемых разъёмов и их распайка, последовательность передаваемых сигналов и скорость их передачи.