
- •Учебный модуль статистические оценки параметров построение доверительных интервалов
- •I. Статистическое оценивание
- •Правая половина уровня значимости
- •Левая половина уровня значимости
- •II. Построение доверительного интервала для математического ожидания генеральной совокупности при известном стандартном отклонении
- •III. Построение доверительного интервала для математического ожидания генеральной совокупности при неизвестной дисперсии
- •IV. Построение доверительного интервала для доли признака в генеральной совокупности
- •V. Определение объема выборки
- •5.1. Определение объема выборки для оценки математического ожидания
- •5.2. Определение объема выборки для оценки доли признака в генеральной совокупности
- •VI. Применение доверительных интервалов при проведении самооценки смк
- •6.1. Оценка суммы элементов генеральной совокупности
- •6.2. Оценка разности
- •6.3. Односторонняя оценка доли нарушений установленных правил
- •VII. Вычисление оценок и объема выборок, извлеченных из конечной генеральной совокупности
- •7.1. Оценка математического ожидания
- •7.2. Оценка доли признака
- •7.3. Определение объема выборки
- •Значения функции
- •Критические значения распределения Стъюдента
α/2
95%
-й доверительный интервал
Правая половина уровня значимости
Критическое значение
= - t
(Z)
X
α/2
Левая половина уровня значимости
Критическое значение
= + t
(Z)
Рис. 1. Доверительный интервал и предельная ошибка выборки
II. Построение доверительного интервала для математического ожидания генеральной совокупности при известном стандартном отклонении
Рассматриваемая ситуация характерна для производителя, когда налажен массовый выпуск продукции с установленными техническими характеристиками. Менеджер по качеству обязан организовать выборочный контроль качества выпускаемой продукции и периодически анализировать результаты выходного контроля, не допуская отклонения определяющих параметров качества за допустимые пределы. Для потребителя данная ситуация маловероятна.
Методика построения доверительного интервала состоит в следующем. Из выражения (2) следует, величина доверительного интервала зависит от статистической нестабильности самой генеральной совокупности (параметр σ), объема выборки n и коэффициента t, который, в свою очередь, зависит от закона распределения генеральной совокупности и ее параметров μ или σ.
В случае распределения генеральной совокупности по нормальному закону и известном стандартном отклонении σ доверительный интервал для математического ожидания генеральной совокупности μ имеет границы:
,5 (3)
где стандартизованная (выраженная в долях σ) величина Z соответствует определенному доверительному уровню и определяется из таблиц нормального распределения (табл. 1).
Например, доверительному уровню, равному 95% (α=0,05), соответствует Z = ±1,96. Если требуется построить интервал, доверительный уровень которого равен 99%, то величина Z приближенно равна 2,58. Для 90% уровня надежности Z = ±1,65.
Интервал, выраженный формулой (3), можно представить с 95 %-м уровнем вероятности следующим образом:
(4)
Небольшое алгебраическое преобразование в двойном неравенстве даст:
(5)
Рассмотрим
гипотетический пример. Допустим, что
математическое ожидание μ
исследуемого параметра генеральной
совокупности равно 1000 размерных единиц
(это могут быть граммы, метры, секунды
или любые другие физические величины).
Предположим, что из генеральной
совокупности извлекается выборка,
состоящая из 25 единиц продукции,
измеряется действительное значение
физической величины каждого образца
выборки и вычисляется среднее значение
анализируемой физической величины для
всех 25 представителей, которое равно
=996,75
ед, а истинное стандартное отклонение
σ
=
15.
Воспользовавшись результатами (4) и (50), получаем, что интервал для оценки математического ожидания μ имеет границы:
996,75±
1,9615/
Откуда
994,12 < μ < 1005,88.
Поскольку математическое ожидание генеральной совокупности μ равно 1000, оно попадает в этот интервал, и, следовательно, данная выборка дает правильную оценку (рис. 2, доверительный интервал 1).
Продолжим анализ нашего гипотетического примера. Допустим, что выборочное среднее некоей выборки объема п = 25, равно 1001,50. Доверительный интервал, построенный по этой выборке, имеет границы равные 1001,50 ± 1,9615/ , т.е. 1001,50±5,88 (доверительный интервал 2 на рис. 2).
Таким образом,
995,62 ≤ μ £ 1007,38.
Поскольку математическое ожидание генеральной совокупности μ равно 1000, оно попадает в этот интервал, и, следовательно, данная оценка является правильной.
Возникает впечатление, что выборки, имеющие объем п = 25, всегда приводят к правильным оценкам математического ожидания генеральной совокупности μ. Чтобы опровергнуть это, рассмотрим третий гипотетический пример. Допустим, что =992 ед. Интервал, предложенный для оценки математического ожидания μ, имеет границы: 992±1,96×15 , т.е. 992 ±5,88. Таким образом, в данном случае имеем:
986,12 ≤ μ 997,88 (доверительный интервал 3 на рис. 2).
Эта оценка неверна, поскольку математическое ожидание генеральной совокупности μ равна 1000 и не попадает в этот интервал (см. рис. 2, доверительный интервал 3). Таким образом, для некоторых выборок эта оценка верна, а для некоторых — нет. Кроме того, на практике, как правило, из генеральной совокупности извлекается только одна выборка. Следовательно, поскольку математическое ожидание генеральной совокупности μ не известно, невозможно сказать, верна полученная интервальная оценка или нет.
Чтобы разрешить эту дилемму, необходимо определить долю выборок, позволяющих правильно оценить математическое ожидание генеральной совокупности μ. Для этого следует исследовать еще две гипотетические выборки, средние значения которых равны 994,12 и 1005,88 соответственно.
Если
=
994,12,
мы получаем интервал 994,12
±1,9615/
, т.е. 994,12
±5,88.
Это приводит к оценке
988,24 ≤ μ £ 1000 (доверительный интервал 4 на рис. 2).
Поскольку математическое ожидание генеральной совокупности μ, равное 1000, является верхней границей интервала, эта оценка верна.
Если = 1005,88, мы получаем интервал 1005,88 ± 1,96×15/ , т.е. 1005,88±5,88. Это приводит к оценке
1000 ≤ μ £ 1011,76 (доверительный интервал 5 на рис. 2).
Поскольку математическое ожидание генеральной совокупности μ, равное 1000, является нижней границей интервала, эта оценка верна.
Таким образом, если выборочное среднее изменяется в диапазоне от 994,12 до 1005,88 ед., математическое ожидание генеральной совокупности лежит где-то внутри этого соответствующего доверительного интервала. Вероятность того, что это значение лежит в интервале с границами 994,12 и 1005,88, равна 95%. Следовательно, 95% средних значений всех выборок, имеющих объем n = 25, позволяют правильно оценить математическое ожидание генеральной совокупности, а 5% — нет.
На практике, как правило, из генеральной совокупности извлекается только одна выборка, а математическое ожидание генеральной совокупности μ не известно. По этой причине невозможно гарантировать, что некий конкретный доверительный интервал содержит величину μ. Можно лишь утверждать, что вероятность этого события равна 95%.
В некоторых ситуациях желательно иметь более высокий доверительный уровень, а следовательно, более высокую точность оценки величины μ (например, 99%). Но иногда можно ограничиться и менее точной оценкой (например, 90%),
Как правило, доверительный уровень обозначают следующим образом: (1-α)100%, где величина α представляет собой площадь, ограниченную хвостом распределения, выходящим за пределы доверительного интервала. Величину α называют уровнем значимости доверительного интервала. Кроме того, в качестве синонима для доверительного уровня иногда употребляется выражение «доверительная вероятность». Площади, ограниченные как левым, так и правым хвостами распределения, выходящими за пределы доверительного интервала, равны α/2 (см. рис.1).
В
озникает
вопрос, почему бы не построить интервал,
доверительный уровень которого был бы
очень близок к 100%. Это нецелесообразно,
поскольку такой доверительный интервал
оказался бы слишком широким, а оценка
математического ожидания — слишком
неточной. Разумеется, вероятность того,
что математическое ожидание лежит в
этом интервале, очень высока, однако
для принятия решения этот факт практически
бесполезен.
Рис. 2. Доверительные интервальные оценки математического ожидания генеральной совокупности, полученные по пяти разным выборкам объема n = 25, извлеченным из генеральной совокупности с параметрами μ= 1000 и σ = 15
Задачи и упражнения к разделу II
Задача 1. Оценка среднего диаметра столовых тарелок
При производстве столовых тарелок для 1-х блюд их средний диаметр должен составлять 23 см, а его стандартное отклонение — 0,2 см. Периодически из произведенной продукции, чтобы оценить ее качество, извлекаются выборки. Допустим, выборка состоит из 100 тарелок, а ее выборочное среднее — 23,98 см. Постройте интервал, содержащий математическое ожидание генеральной совокупности, доверительный уровень которого равен 95%.
Решение.
Подставим в формулу (3) величину Z=1,96, соответствующую доверительному уровню, равному 95%:
.
23,9408 ≤ µ ≤ 24,0192.
Таким образом, вероятность того, что математическое ожидание генеральной совокупности лежит в интервале от 23,9408 до 24,0192, равна 95% . Поскольку номинальный диаметр тарелок равен 23 см, то он не попадает в построенный интервал. Следовательно, производственный процесс выполняется не правильно.
Изменим условия задачи:
А). μ = 23 см; = 23,98; σ = 4 см; n = 100; α = 0,05.
Ответ: 23,002 ≤ µ ≤ 23,158
Б). μ = 23 см; = 23,98 см; σ = 4 см; n = 100; α = 0,05.
Ответ: 22,95 ≤ µ ≤ 23,158
В). μ = 23 см; = 23,08 см; σ = 4 см; n = 100; α = 0,01.
Ответ: 22,05 ≤ µ ≤ 24,11
Г). μ = 23 см; = 23,08 см; σ = 4 см; n = 100; α = 0,05.
Ответ: 22,30 ≤ µ ≤ 24,86
Д). μ = 23 см; = 23,98 см; σ = 4 см; n = 100; α = 0,01.
Ответ: 22,94 ≤ µ ≤ 25,01
Е). μ = 23 см; = 23,98 см; σ = 5 см; n = 100; α = 0,1.
Ответ: 23,15 ≤ µ ≤ 24,80
Ж). μ = 23 см; = 23,98 см; σ = 4 см; n = 50; α = 0,5.
Ответ: 22,87 ≤ µ ≤ 25,09
Решите задачи с условиями А),…., Ж), найдите ошибки в приведенных ответах и поясните полученные результаты.
Задача 2. Предположим, что = 85, σ = 8 и n = 64. Постройте 95%-ный доверительный интервал для математического ожидания генеральной совокупности.
Почему невозможно добиться 100% -го доверительного уровня?
Правда ли, что 95% всех выборочных средних лежат в интервале от 10,99408 до 11,00192 см?
Обоснуйте свой ответ.
Задача 3. Предположим, что =125, σ = 24 и п = 36. Постройте 99%-ный доверительный интервал для математического ожидания генеральной совокупности.
ответ?
Задача 4. По данным менеджера по качеству, вероятность того, что средний объем продаж колеблется между 170 000 и 200 000 руб., равна 95%. Объясните смысл этого утверждения.