
- •Билет 1
- •Байесово решающее правило классификации (в распознавании образов) при непрерывных признаках.
- •Типы данных. Основные структуры данных. Массивы, списки, деревья.
- •Жизненный цикл программного обеспечения. Основные процессы жизненного цикла. Модели жизненного цикла программного обеспечения.
- •Билет 2
- •1. Байесово решающее правило классификации (в распознавании образов) при дискретных признаках.
- •2. Древовидные структуры (деревья бинарные, сбалансированные, сильноветвящиеся). Основные операции (поиск, вставка, удаление).
- •3. Типы программных продуктов. Эксплуатационные требования к программным продуктам.
- •Построение решающей функции (при классификации в распознавании образов) по обучающей выборке.
- •Задачи поиска образа в строке. Алгоритмы поиска Боуэра-Мура, Кнута-Морриса-Пратта.
- •Использование языка uml для моделирования программного обеспечения. Основные uml-диаграммы.
- •Прямой метод восстановления решающей функции (при классификации в распознавании образов).
- •Задачи сортировки. Прямое включение. Прямой выбор. Прямой обмен. Шейкер. Сортировка Шелла.
- •Типы пользовательских интерфейсов и этапы их разработки. Организация человеко-машинного взаимодействия.
- •Билет 5
- •Персептроны.
- •Сортировка последовательностей: простое слияние, естественное слияние.
- •Тестирование программного обеспечения. Классификация ошибок. Примеры.
- •1.Постановка задачи планирования эксперимента.
- •2.Понятие графа. Представление графов в памяти эвм. Обход графа в глубину, обход графа в ширину.
- •3.Методы отладки программного обеспечения. Примеры.
- •Билет 7
- •Ортогональные планы 1 порядка при построении линейной статистической модели объекта.
- •Нахождение кратчайших путей в графе Алгоритмы Дейкстры и Флойда.
- •Понятие отношения, атрибута отношения, домена атрибута, кортежа. Связь с теоретико-множественной моделью.
- •Билет 8
- •1.Крутое восхождение по поверхности отклика (в планировании эксперимента).
- •2.Нахождение минимального остовного дерева графа. Алгоритмы Прима и Крускала.
- •3.Представление данных в реляционной модели. Понятие схемы базы данных. Понятие ключа-кандидата, первичного ключа, вторичного ключа.
- •Билет 9
- •Дробные реплики(в планировании эксперимента) и их разрешающая способность.
- •Назначение, функции и состав ос.
- •Понятие эс. Основные технологические требования, архитектура и принцип функционирования.
- •Билет 10
- •Модели производительности информационно-управляющей системы и эффективности затрат на разработку по. Оптимальная производительность.
- •Архитектура клиент-сервер. Основные элементы и их взаимодействия (клиент и сервер). Трехзвенная архитектура "сервер бд - сервер Приложений - Клиент". Основные элементы и их взаимодействие.
- •Разбиение матрицы планирования на блоки (с целью устранения кусочно-постоянного дрейфа).
- •Нетрудно убедиться, что теперь дрейф не смещает параметров линейной модели.
- •Ортогональное планирование второго порядка (в планировании эксперимента).
- •Безопасность и надежность ос. Механизмы защиты в конкретных ос.
- •Нечеткие (размытые) знания, нечеткие множества и операции, нечеткие правила, нечеткий вывод. Представление нечетких знаний.
- •Организация логического вывода в нечетких системах.
- •Билет 12
- •Концепция вс, локальные и глобальные вс.
- •Технология хранилищ данных.
- •Ортогональное планирование второго порядка (в планировании эксперимента).
- •Билет 13
- •1. Метод случайного баланса
- •2.Управление памятью. Виртуальная память
- •3. Анализ чувствительности и модели эффективности затрат на разработку по информационно-управляющих систем.
- •Билет 14
- •Понятие знаний. Схема решения задач с использованием знаний. Логический вывод. Содержательный состав знаний. Декларативные и процедурные знания, жесткие и мягкие знания, метазнания.
- •Системы управления базами данных, их назначение. Примеры.
- •Простейший адаптивный алгоритм подстройки параметров линейных моделей.
- •Билет 15
- •Оценка Рознблатта-Парзена (при непараметрической обработке информации).
- •Классификация ос. Системы реального времени.
- •Представление данных в реляционной модели. Понятие схемы базы данных. Понятие ключа-кандидата, первичного ключа, вторичного ключа.
- •Билет 16
- •Определение понятия "проектирование". Цели и задачи этапа проектирования. Его место в технологии разработки ис. Основные требования к проектированию ис.
- •Организация памяти эвм.
- •Непараметрическая оценка регрессии
- •Адаптивное управление при априорной неопределенности (непараметрическая обработка информации).
- •Понятия целостности базы данных, ограничений целостности, транзакции, отката.
- •3. Основные модели представления знаний и их использование (правила продукций, фреймы, семантические сети).
- •Билет 18
- •Топологии лвс ( звезда, кольцо, шина) и их сравнительные характеристики.
- •Модель надежности программной архитектуры иус.
- •Применение непараметрического сглаживания в классификации ( в распознавании образов)
- •Билет 19
- •Методы одномерного поиска минимума унимодальных функций.
- •Взаимодействие процессов и потоков на примере конкретной ос.
- •Понятие "Архитектура информационной системы". Двухслойные и трехслойные архитектуры. Бизнес-процесс и четырехслойная архитектура.
- •Технология разработки эс: основные технологические этапы, уровни готовности эс, характеристики эффективности эс.
- •Показатели качества системы:
- •Показатели быстродействия системы:
- •2. Структура транслятора. Этапы, фазы, проходы процесса трансляции.
- •3. Последовательный симплекс метод оптимизации.
- •Билет 20,2
- •Градиентный метод с использованием ортогонального планирования первого порядка.
- •Процессы и потоки. Их диспетчеризация на примере конкретной ос.
- •Понятие нормализации. Нормальные формы отношений. Денормализация.
- •Билет 21
- •Понятие информационного объекта. Понятие атрибута информационного объекта. Виды связных отношений.
- •Логические модели представления знаний. Естественные дедуктивные системы. Системы, использующие метод резолюций.
- •Практическая организация доказательства по принципу резолюции
- •Критерий наименьших квадратов.
- •Билет 22
- •Метод наименьших квадратов при линейной параметризации модели.
- •Файловые системы на примере конкретных ос
- •3. Ненадежные знания. Использование коэффициентов уверенности (метод Шортлиффа). Байесовский подход (метод к.Нейлора).
- •Билет 23
- •Метод наименьших квадратов при нелинейной параметризации модели.
- •Лексический анализ. Регулярные грамматики и выражения, конечные автоматы.
- •Параллельные системы. Понятие о многомашинных и многопроцессорных вычислительных системах. Матричные и ассоциативные вс. Конвейерные и потоковые вс.
- •Билет 24
- •Применение процедуры определения дохода от информации в инженерном программировании иус.
- •Инструментальные средства для разработки эс (аппаратные, программные, в т.Ч. Универсальные языки, символьные языки, языки представления знаний, оболочки).
- •Робастные оценки параметров моделей.
- •Билет 25
- •3. Ненадежные знания. Использование коэффициентов уверенности (метод Шортлиффа). Байесовский подход (метод к.Нейлора).
- •Билет 26
- •Архитектурные особенности организации эвм различных классов.
- •Мультипрограммирование и режимы работы ос.
- •Реляционная алгебра. Операции проецирования, декартового произведения, соединения.
- •Современные методы и средства проектирования информационных систем. Case-технологии.
- •Модель формирования оптимального состава программных модулей отказоустойчивой информационно-управляющей системы.
- •Базовая эталон-модель взаимодействия открытых систем(osi).
- •Физический.
- •Канальный(уровень передачи данных).
- •Сетевой.
- •Транспортный.
- •Сеансовый.
- •Представительский (уровень представления).
- •Прикладной.
- •Билет 28
- •1.Основные методологии, используемые при проектировании. Методология datarun. Цель и задачи методологии.
- •2.Дробные реплики (в планировании эксперимента) и их разрешающая способность.
- •3.Синтаксис и семантика языков программирования. Формальные грамматики.
- •Билет 29
- •1. Функциональная и структурная организация центрального процессора
- •2. Методология datarun
- •Критерий наименьших квадратов
- •Билет 30
- •Роль методологии в проектировании. Определение понятия "методология проектирования". Основные методы, используемые при проектировании (абстракция и спецификация).
- •Максимизация ожидаемой чистой стоимости разработки прототипа по иус.
- •Постановка задачи планирования эксперимента.
Задачи сортировки. Прямое включение. Прямой выбор. Прямой обмен. Шейкер. Сортировка Шелла.
Естественным условием, предъявляемым к любому методу внутренней сортировки является то, что эти методы не должны требовать дополнительной памяти: все перестановки с целью упорядочения элементов массива должны производиться в пределах того же массива. Мерой эффективности алгоритма внутренней сортировки являются число требуемых сравнений значений ключа (C) и число перестановок элементов (M).
Прямое включение
При сортировке элементов массива с помощью прямого включения массив делят на две части: отсортированную и не отсортированную. В начале работы алгоритмы в качестве отсортированной части массива принимается только один первый элемент, а в качестве не отсортированной части – все остальные элементы.
На каждом шаге, начиная с i = 2 и увеличивая i каждый раз на единицу, из неотсортированной последовательности извлекается i-й элемент и вставляется в отсортированную так, чтобы не нарушить в ней упорядоченности элементов. Каждый шаг алгоритма включает четыре действия:
Взять i-й элемент массива, он же является первым элементом в не отсортированной части, и сохранить его в дополнительной переменной.
Найти позицию j в отсортированной части массива, куда будет вставлен i-й элемент, значение которого теперь хранится в дополнительной переменной. Вставка этого элемента не должна нарушить упорядоченности элементов отсортированной части массива.
Сдвиг элементов массива с i – 1 позиции по j-ю на один элемент вправо, чтобы освободить найденную позицию для вставки.
Вставка взятого элемента в найденную j-ю позицию.
Прямой выбор
При сортировке с помощью прямого выбора массив также делится на две части: отсортированную и не отсортированную. При прямом выборе происходит поиск одного элемента из не отсортированной последовательности, который обладает наименьшим (наибольшим) значением, и уже найденный элемент помещается в конец отсортированной последовательности.
Прямой обмен
Алгоритм прямого обмена основывается на сравнении и перестановке пары соседних элементов и продолжении этого процесса до тех пор, пока не будут упорядочены все элементы. Рассмотрим 2 алгоритма прямого обмена:
Пузырьковая сортировка
На i-ом проходе алгоритма (1 ≤ i ≤ n) рассматриваются в обратном порядке элементы массива с n-го по i-й включительно. Сравниваются только соседние элементы. При этом, если производится сортировка по возрастанию
и элемент a[j] оказывается меньше предшествующего ему a[j – 1], то они меняются местами.
Шейкерная сортировка
Модификация пузырьковой сортировки. Здесь на каждом шаге меняется направление прохода массива (точнее его не отсортированной части).
Сортировка Шелла
Сначала отдельно группируются элементы, отстоящие друг от друга на расстоянии 4.
Следующим шагом выполняется сортировка внутри каждой из групп методом прямого включения.
Следующим проходом элементы группируются так, что теперь в одну группу входят элементы, отстоящие друг от друг на две позиции.
Вновь в каждой группе выполняется сортировка с помощью прямого включения.
И наконец, на третьем проходе идет обычная сортировка с помощью прямого включения