
- •Билет 1
- •Байесово решающее правило классификации (в распознавании образов) при непрерывных признаках.
- •Типы данных. Основные структуры данных. Массивы, списки, деревья.
- •Жизненный цикл программного обеспечения. Основные процессы жизненного цикла. Модели жизненного цикла программного обеспечения.
- •Билет 2
- •1. Байесово решающее правило классификации (в распознавании образов) при дискретных признаках.
- •2. Древовидные структуры (деревья бинарные, сбалансированные, сильноветвящиеся). Основные операции (поиск, вставка, удаление).
- •3. Типы программных продуктов. Эксплуатационные требования к программным продуктам.
- •Построение решающей функции (при классификации в распознавании образов) по обучающей выборке.
- •Задачи поиска образа в строке. Алгоритмы поиска Боуэра-Мура, Кнута-Морриса-Пратта.
- •Использование языка uml для моделирования программного обеспечения. Основные uml-диаграммы.
- •Прямой метод восстановления решающей функции (при классификации в распознавании образов).
- •Задачи сортировки. Прямое включение. Прямой выбор. Прямой обмен. Шейкер. Сортировка Шелла.
- •Типы пользовательских интерфейсов и этапы их разработки. Организация человеко-машинного взаимодействия.
- •Билет 5
- •Персептроны.
- •Сортировка последовательностей: простое слияние, естественное слияние.
- •Тестирование программного обеспечения. Классификация ошибок. Примеры.
- •1.Постановка задачи планирования эксперимента.
- •2.Понятие графа. Представление графов в памяти эвм. Обход графа в глубину, обход графа в ширину.
- •3.Методы отладки программного обеспечения. Примеры.
- •Билет 7
- •Ортогональные планы 1 порядка при построении линейной статистической модели объекта.
- •Нахождение кратчайших путей в графе Алгоритмы Дейкстры и Флойда.
- •Понятие отношения, атрибута отношения, домена атрибута, кортежа. Связь с теоретико-множественной моделью.
- •Билет 8
- •1.Крутое восхождение по поверхности отклика (в планировании эксперимента).
- •2.Нахождение минимального остовного дерева графа. Алгоритмы Прима и Крускала.
- •3.Представление данных в реляционной модели. Понятие схемы базы данных. Понятие ключа-кандидата, первичного ключа, вторичного ключа.
- •Билет 9
- •Дробные реплики(в планировании эксперимента) и их разрешающая способность.
- •Назначение, функции и состав ос.
- •Понятие эс. Основные технологические требования, архитектура и принцип функционирования.
- •Билет 10
- •Модели производительности информационно-управляющей системы и эффективности затрат на разработку по. Оптимальная производительность.
- •Архитектура клиент-сервер. Основные элементы и их взаимодействия (клиент и сервер). Трехзвенная архитектура "сервер бд - сервер Приложений - Клиент". Основные элементы и их взаимодействие.
- •Разбиение матрицы планирования на блоки (с целью устранения кусочно-постоянного дрейфа).
- •Нетрудно убедиться, что теперь дрейф не смещает параметров линейной модели.
- •Ортогональное планирование второго порядка (в планировании эксперимента).
- •Безопасность и надежность ос. Механизмы защиты в конкретных ос.
- •Нечеткие (размытые) знания, нечеткие множества и операции, нечеткие правила, нечеткий вывод. Представление нечетких знаний.
- •Организация логического вывода в нечетких системах.
- •Билет 12
- •Концепция вс, локальные и глобальные вс.
- •Технология хранилищ данных.
- •Ортогональное планирование второго порядка (в планировании эксперимента).
- •Билет 13
- •1. Метод случайного баланса
- •2.Управление памятью. Виртуальная память
- •3. Анализ чувствительности и модели эффективности затрат на разработку по информационно-управляющих систем.
- •Билет 14
- •Понятие знаний. Схема решения задач с использованием знаний. Логический вывод. Содержательный состав знаний. Декларативные и процедурные знания, жесткие и мягкие знания, метазнания.
- •Системы управления базами данных, их назначение. Примеры.
- •Простейший адаптивный алгоритм подстройки параметров линейных моделей.
- •Билет 15
- •Оценка Рознблатта-Парзена (при непараметрической обработке информации).
- •Классификация ос. Системы реального времени.
- •Представление данных в реляционной модели. Понятие схемы базы данных. Понятие ключа-кандидата, первичного ключа, вторичного ключа.
- •Билет 16
- •Определение понятия "проектирование". Цели и задачи этапа проектирования. Его место в технологии разработки ис. Основные требования к проектированию ис.
- •Организация памяти эвм.
- •Непараметрическая оценка регрессии
- •Адаптивное управление при априорной неопределенности (непараметрическая обработка информации).
- •Понятия целостности базы данных, ограничений целостности, транзакции, отката.
- •3. Основные модели представления знаний и их использование (правила продукций, фреймы, семантические сети).
- •Билет 18
- •Топологии лвс ( звезда, кольцо, шина) и их сравнительные характеристики.
- •Модель надежности программной архитектуры иус.
- •Применение непараметрического сглаживания в классификации ( в распознавании образов)
- •Билет 19
- •Методы одномерного поиска минимума унимодальных функций.
- •Взаимодействие процессов и потоков на примере конкретной ос.
- •Понятие "Архитектура информационной системы". Двухслойные и трехслойные архитектуры. Бизнес-процесс и четырехслойная архитектура.
- •Технология разработки эс: основные технологические этапы, уровни готовности эс, характеристики эффективности эс.
- •Показатели качества системы:
- •Показатели быстродействия системы:
- •2. Структура транслятора. Этапы, фазы, проходы процесса трансляции.
- •3. Последовательный симплекс метод оптимизации.
- •Билет 20,2
- •Градиентный метод с использованием ортогонального планирования первого порядка.
- •Процессы и потоки. Их диспетчеризация на примере конкретной ос.
- •Понятие нормализации. Нормальные формы отношений. Денормализация.
- •Билет 21
- •Понятие информационного объекта. Понятие атрибута информационного объекта. Виды связных отношений.
- •Логические модели представления знаний. Естественные дедуктивные системы. Системы, использующие метод резолюций.
- •Практическая организация доказательства по принципу резолюции
- •Критерий наименьших квадратов.
- •Билет 22
- •Метод наименьших квадратов при линейной параметризации модели.
- •Файловые системы на примере конкретных ос
- •3. Ненадежные знания. Использование коэффициентов уверенности (метод Шортлиффа). Байесовский подход (метод к.Нейлора).
- •Билет 23
- •Метод наименьших квадратов при нелинейной параметризации модели.
- •Лексический анализ. Регулярные грамматики и выражения, конечные автоматы.
- •Параллельные системы. Понятие о многомашинных и многопроцессорных вычислительных системах. Матричные и ассоциативные вс. Конвейерные и потоковые вс.
- •Билет 24
- •Применение процедуры определения дохода от информации в инженерном программировании иус.
- •Инструментальные средства для разработки эс (аппаратные, программные, в т.Ч. Универсальные языки, символьные языки, языки представления знаний, оболочки).
- •Робастные оценки параметров моделей.
- •Билет 25
- •3. Ненадежные знания. Использование коэффициентов уверенности (метод Шортлиффа). Байесовский подход (метод к.Нейлора).
- •Билет 26
- •Архитектурные особенности организации эвм различных классов.
- •Мультипрограммирование и режимы работы ос.
- •Реляционная алгебра. Операции проецирования, декартового произведения, соединения.
- •Современные методы и средства проектирования информационных систем. Case-технологии.
- •Модель формирования оптимального состава программных модулей отказоустойчивой информационно-управляющей системы.
- •Базовая эталон-модель взаимодействия открытых систем(osi).
- •Физический.
- •Канальный(уровень передачи данных).
- •Сетевой.
- •Транспортный.
- •Сеансовый.
- •Представительский (уровень представления).
- •Прикладной.
- •Билет 28
- •1.Основные методологии, используемые при проектировании. Методология datarun. Цель и задачи методологии.
- •2.Дробные реплики (в планировании эксперимента) и их разрешающая способность.
- •3.Синтаксис и семантика языков программирования. Формальные грамматики.
- •Билет 29
- •1. Функциональная и структурная организация центрального процессора
- •2. Методология datarun
- •Критерий наименьших квадратов
- •Билет 30
- •Роль методологии в проектировании. Определение понятия "методология проектирования". Основные методы, используемые при проектировании (абстракция и спецификация).
- •Максимизация ожидаемой чистой стоимости разработки прототипа по иус.
- •Постановка задачи планирования эксперимента.
Файловые системы на примере конкретных ос
Файловая система FAT
Большинство существующих на сегодняшний день файловых систем построены на основе таблицы размещения файлов (FileAllocationTable - FAT), которая содержит дорожки данных в каждом кластере на диске. В FAT 32 используется 32-разрядное число для хранения дорожки данных в каждом кластере,
Таблица размещения файлов (FAT) содержит номера кластеров, в которых расположены файлы на диске. Секторы, не содержащие пользовательских данных (файлов), не отражены в FAT. К таким секторам относятся загрузочные секторы, таблицы размещения файлов и секторы корневого каталога. Дисковое пространство разбивается не на секторы, а на группы секторов, которые называются кластерами. Кластер содержит один или несколько секторов. Каждая ячейка FAT таблицы связана с определенным кластером на диске. Число, содержащееся в этой ячейке, сообщает о том, использован ли данный кластер под какой-либо файл и, если использован, где находится следующий кластер этого файла.
Потерянные кластеры. Это наиболее распространенная ошибка файловой системы, при которой кластеры в FAT помечаются как используемые, хотя на самом деле таковыми не являются. Эти потерянные кластеры появляются при неверном завершении работы приложения или крахе системы. Программы восстановления диска могут обнаружить эти кластеры и восстановить их.
Файловая система NTFS
По сравнению с FAT или FAT32, NTFS предоставляет пользователю целое сочетание достоинств: эффективность, надежность и совместимость. Как и любая другая система, NTFS делит все полезное место на кластеры - блоки данных, используемые единовременно. NTFS поддерживает почти любые размеры кластеров - от 512 байт до 64 Кбайт. При установке NTFS, диск разделяется на две неравные части: первая отводиться под MFT (MasterFileTable - общая таблица файлов), вторую часть занимают собственно ваши данные. MFT соответствует какому-либо файлу. По своей сути это каталог всех файлов находящихся на диске. Надо заметить, что любой элемент данных в NTFS рассматривается как файл.
MFT-зона всегда держится пустой - это делается для того, чтобы самый главный, служебный файл (MFT) не фрагментировался при своем росте.
Свободное
место диска включает в себя всё физически
свободное место - незаполненные куски
MFT-зоны туда тоже включаются. Механизм
использования MFT-зоны таков: когда файлы
уже нельзя записывать в обычное
пространство, MFT-зона просто сокращается
(в текущих версиях операционных систем
ровно в два раза), освобождая таким
образом место для записи файлов. Третья
зона, в свою очередь, делит диск пополам.
Это сделано для надежности, в случае
утери информации в MFT - файле, всегда
можно восстановить информацию. Все
остальные файлы в MFT - зоне могут
располагаться произвольно.
Достоинства NTFS:
1. Быстрая скорость доступа к файлам малого размера; 2. Размер дискового пространства на сегодняшний день практически не ограничен; 3. Фрагментация файлов не влияет на саму файловую систему; 4. Высокая надежность сохранения данных и собственно самой файловой структуры; 5. Высокая производительность при работе с файлами большого размера;
Недостатки NTFS:
1. Более высокие требования к объему оперативной памяти по сравнению с FAT 32; 2. Более низкая скорость работы по сравнению с FAT 32;
Достоинства FAT 32:
1. Недостатки NTFS, 2. Более низкий износ дисков, вследствие меньшего количества передвижений головок чтения/записи.
Недостатки FAT 32:
1
.
Низкая защита от сбоев системы; 2. Не
эффективная работа с файлами больших
размеров; 3. Ограничение по максимальному
объему раздела и файла; 4. Снижение
быстродействия при фрагментации; 5.
Снижение быстродействия при работе с
каталогами, содержащими большое
количество файлов.
Файловые системы Linux
Ext2fs
типичная представительница файловых систем Unix. Отличительная ее особенность - наличие нескольких копий суперблока, что повышает надежность хранения данных. Кроме того, для характерен очень эффективный механизм кэширования дисковых операций, что обеспечивает замечательное их быстродействие. Оборотная сторона чего, однако, - относительно слабая устойчивость при аварийном завершении работы (вследствие мертвого зависания или отказа питания), поскольку отложенность записи изменений файлов делает весьма высокой вероятность нарушения связи между их inodes и блоками данных.
ReiserFS
Файловая система ReiserFS оказалась для Linux исторически первой из журналируемых - в ReiserFS осуществляется журналирование только операций над метаданными файлов. Что, при определенном снижении надежности, обеспечивает высокую производительность.
Кроме этого, ReiserFS обладает уникальной (и по умолчанию задействованной) возможностью оптимизации дискового пространства, занимаемого мелкими, менее одного блока, файлами (а следует помнить, что в любой Unix-системе такие файлы присутствуют в изобилии): они целиком хранятся в своих inode, без выделения блоков в области данных - вместе с экономией места это способствует и росту производительности, так как и данные, и метаданные (в терминах ReiserFS - stat-data) файла хранятся в непосредственной близости и могут быть считаны одной операцией ввода/вывода.
Вторая особенность ReiserFS - то, что т.н. хвосты файлов, то есть их конечные части, меньшие по размеру, чем один блок, могут быть подвергнуты упаковке. Этот режим (tailing) также включается по умолчанию при создании ReiserFS, обеспечивая около 5% экономии дискового пространства. Что, правда, несколько снижает быстродействие.
Ext3fs
В отличие от ReiserFS, Ext3fs - не более чем журналируемая надстройка над классической Ext2fs. Она сохраняет со своей прародительницей полную совместимость, в том числе и на уровне утилит обслуживания. И переход от ext2fs к ext3fs может быть осуществлен простым добавлением файла журнала к первой, не только без переформатирования раздела, но даже и без рестарта машины.
ext3fs является единственной системой из рассматриваемых, в которой возможно журналирование операций не только с метаданными, но и с данными файлов.
В Ext3fs предусмотрено три режима работы - полное журналирование (fulldatajournaling), журналирование с обратной записью (writeback), а также задействуемое по умолчанию последовательное (ordered).