
- •Билет 1
- •Байесово решающее правило классификации (в распознавании образов) при непрерывных признаках.
- •Типы данных. Основные структуры данных. Массивы, списки, деревья.
- •Жизненный цикл программного обеспечения. Основные процессы жизненного цикла. Модели жизненного цикла программного обеспечения.
- •Билет 2
- •1. Байесово решающее правило классификации (в распознавании образов) при дискретных признаках.
- •2. Древовидные структуры (деревья бинарные, сбалансированные, сильноветвящиеся). Основные операции (поиск, вставка, удаление).
- •3. Типы программных продуктов. Эксплуатационные требования к программным продуктам.
- •Построение решающей функции (при классификации в распознавании образов) по обучающей выборке.
- •Задачи поиска образа в строке. Алгоритмы поиска Боуэра-Мура, Кнута-Морриса-Пратта.
- •Использование языка uml для моделирования программного обеспечения. Основные uml-диаграммы.
- •Прямой метод восстановления решающей функции (при классификации в распознавании образов).
- •Задачи сортировки. Прямое включение. Прямой выбор. Прямой обмен. Шейкер. Сортировка Шелла.
- •Типы пользовательских интерфейсов и этапы их разработки. Организация человеко-машинного взаимодействия.
- •Билет 5
- •Персептроны.
- •Сортировка последовательностей: простое слияние, естественное слияние.
- •Тестирование программного обеспечения. Классификация ошибок. Примеры.
- •1.Постановка задачи планирования эксперимента.
- •2.Понятие графа. Представление графов в памяти эвм. Обход графа в глубину, обход графа в ширину.
- •3.Методы отладки программного обеспечения. Примеры.
- •Билет 7
- •Ортогональные планы 1 порядка при построении линейной статистической модели объекта.
- •Нахождение кратчайших путей в графе Алгоритмы Дейкстры и Флойда.
- •Понятие отношения, атрибута отношения, домена атрибута, кортежа. Связь с теоретико-множественной моделью.
- •Билет 8
- •1.Крутое восхождение по поверхности отклика (в планировании эксперимента).
- •2.Нахождение минимального остовного дерева графа. Алгоритмы Прима и Крускала.
- •3.Представление данных в реляционной модели. Понятие схемы базы данных. Понятие ключа-кандидата, первичного ключа, вторичного ключа.
- •Билет 9
- •Дробные реплики(в планировании эксперимента) и их разрешающая способность.
- •Назначение, функции и состав ос.
- •Понятие эс. Основные технологические требования, архитектура и принцип функционирования.
- •Билет 10
- •Модели производительности информационно-управляющей системы и эффективности затрат на разработку по. Оптимальная производительность.
- •Архитектура клиент-сервер. Основные элементы и их взаимодействия (клиент и сервер). Трехзвенная архитектура "сервер бд - сервер Приложений - Клиент". Основные элементы и их взаимодействие.
- •Разбиение матрицы планирования на блоки (с целью устранения кусочно-постоянного дрейфа).
- •Нетрудно убедиться, что теперь дрейф не смещает параметров линейной модели.
- •Ортогональное планирование второго порядка (в планировании эксперимента).
- •Безопасность и надежность ос. Механизмы защиты в конкретных ос.
- •Нечеткие (размытые) знания, нечеткие множества и операции, нечеткие правила, нечеткий вывод. Представление нечетких знаний.
- •Организация логического вывода в нечетких системах.
- •Билет 12
- •Концепция вс, локальные и глобальные вс.
- •Технология хранилищ данных.
- •Ортогональное планирование второго порядка (в планировании эксперимента).
- •Билет 13
- •1. Метод случайного баланса
- •2.Управление памятью. Виртуальная память
- •3. Анализ чувствительности и модели эффективности затрат на разработку по информационно-управляющих систем.
- •Билет 14
- •Понятие знаний. Схема решения задач с использованием знаний. Логический вывод. Содержательный состав знаний. Декларативные и процедурные знания, жесткие и мягкие знания, метазнания.
- •Системы управления базами данных, их назначение. Примеры.
- •Простейший адаптивный алгоритм подстройки параметров линейных моделей.
- •Билет 15
- •Оценка Рознблатта-Парзена (при непараметрической обработке информации).
- •Классификация ос. Системы реального времени.
- •Представление данных в реляционной модели. Понятие схемы базы данных. Понятие ключа-кандидата, первичного ключа, вторичного ключа.
- •Билет 16
- •Определение понятия "проектирование". Цели и задачи этапа проектирования. Его место в технологии разработки ис. Основные требования к проектированию ис.
- •Организация памяти эвм.
- •Непараметрическая оценка регрессии
- •Адаптивное управление при априорной неопределенности (непараметрическая обработка информации).
- •Понятия целостности базы данных, ограничений целостности, транзакции, отката.
- •3. Основные модели представления знаний и их использование (правила продукций, фреймы, семантические сети).
- •Билет 18
- •Топологии лвс ( звезда, кольцо, шина) и их сравнительные характеристики.
- •Модель надежности программной архитектуры иус.
- •Применение непараметрического сглаживания в классификации ( в распознавании образов)
- •Билет 19
- •Методы одномерного поиска минимума унимодальных функций.
- •Взаимодействие процессов и потоков на примере конкретной ос.
- •Понятие "Архитектура информационной системы". Двухслойные и трехслойные архитектуры. Бизнес-процесс и четырехслойная архитектура.
- •Технология разработки эс: основные технологические этапы, уровни готовности эс, характеристики эффективности эс.
- •Показатели качества системы:
- •Показатели быстродействия системы:
- •2. Структура транслятора. Этапы, фазы, проходы процесса трансляции.
- •3. Последовательный симплекс метод оптимизации.
- •Билет 20,2
- •Градиентный метод с использованием ортогонального планирования первого порядка.
- •Процессы и потоки. Их диспетчеризация на примере конкретной ос.
- •Понятие нормализации. Нормальные формы отношений. Денормализация.
- •Билет 21
- •Понятие информационного объекта. Понятие атрибута информационного объекта. Виды связных отношений.
- •Логические модели представления знаний. Естественные дедуктивные системы. Системы, использующие метод резолюций.
- •Практическая организация доказательства по принципу резолюции
- •Критерий наименьших квадратов.
- •Билет 22
- •Метод наименьших квадратов при линейной параметризации модели.
- •Файловые системы на примере конкретных ос
- •3. Ненадежные знания. Использование коэффициентов уверенности (метод Шортлиффа). Байесовский подход (метод к.Нейлора).
- •Билет 23
- •Метод наименьших квадратов при нелинейной параметризации модели.
- •Лексический анализ. Регулярные грамматики и выражения, конечные автоматы.
- •Параллельные системы. Понятие о многомашинных и многопроцессорных вычислительных системах. Матричные и ассоциативные вс. Конвейерные и потоковые вс.
- •Билет 24
- •Применение процедуры определения дохода от информации в инженерном программировании иус.
- •Инструментальные средства для разработки эс (аппаратные, программные, в т.Ч. Универсальные языки, символьные языки, языки представления знаний, оболочки).
- •Робастные оценки параметров моделей.
- •Билет 25
- •3. Ненадежные знания. Использование коэффициентов уверенности (метод Шортлиффа). Байесовский подход (метод к.Нейлора).
- •Билет 26
- •Архитектурные особенности организации эвм различных классов.
- •Мультипрограммирование и режимы работы ос.
- •Реляционная алгебра. Операции проецирования, декартового произведения, соединения.
- •Современные методы и средства проектирования информационных систем. Case-технологии.
- •Модель формирования оптимального состава программных модулей отказоустойчивой информационно-управляющей системы.
- •Базовая эталон-модель взаимодействия открытых систем(osi).
- •Физический.
- •Канальный(уровень передачи данных).
- •Сетевой.
- •Транспортный.
- •Сеансовый.
- •Представительский (уровень представления).
- •Прикладной.
- •Билет 28
- •1.Основные методологии, используемые при проектировании. Методология datarun. Цель и задачи методологии.
- •2.Дробные реплики (в планировании эксперимента) и их разрешающая способность.
- •3.Синтаксис и семантика языков программирования. Формальные грамматики.
- •Билет 29
- •1. Функциональная и структурная организация центрального процессора
- •2. Методология datarun
- •Критерий наименьших квадратов
- •Билет 30
- •Роль методологии в проектировании. Определение понятия "методология проектирования". Основные методы, используемые при проектировании (абстракция и спецификация).
- •Максимизация ожидаемой чистой стоимости разработки прототипа по иус.
- •Постановка задачи планирования эксперимента.
3. Типы программных продуктов. Эксплуатационные требования к программным продуктам.
Типы программного обеспечения
Функционально, программное обеспечение делится на следующие категории:
Системное программное обеспечение (операционная система; файловый менеджер; архиватор; перекодировщик; антивирус; другие...)
Прикладное программное обеспечение (Офисное ПО: текстовый процессор, электронная таблица; ПО для работы в сети и обмена информацией: браузер, почтовая программа, программа для обмена мгновенные сообщениями; ПО для работы с графикой, звуком; ПО для проектирования; компьютерные игры; другие...)
Инструментальное программное обеспечение (Интегрированные среды разработки; SDK; Компиляторы; Интерпретаторы; Линковщики; Парсеры и генераторы парсеров; Ассемблеры; Отладчики; Генераторы документации; Средства анализа покрытия кода; Средства автоматизированного тестирования; Системы управления версиями)
Эксплуатационные требования к ПО.
Требования к производительности
Требования к объемам информации
Требования к нагрузочному тестированию
Требования к условиям эксплуатации
Требования к доступности системы
Билет 3
Построение решающей функции (при классификации в распознавании образов) по обучающей выборке.
Суть задачи классификации заключается в разбиении пространства признаков на непересекающиеся области – по одной для каждого класса.
Допустим,
имеются два информативных признака
и два класса. На рисунке приведена
обучающая выборка (кружки, когда истинным
является первый класс, и точки, когда
истинным является второй класс).
решающее
правило: если решающая функция
больше нуля (
),
то принимается решение об истинности
первого класса; если решающая функция
меньше нуля (
),
то принимается решение об истинности
второго класса; и граница, разделяющая
область на две подобласти:
и
.
Обучающая выборка служит для построения решающей функции . Качество разделения области на две подобласти оценивается по проверочной (экзаменующей) выборке.
При обучении параметры решающей функции подбираются таким образом, чтобы ошибка классификации была наименьшей. На этом этапе опять можно применять параметрический и непараметрический подходы. При параметрическом подходе уравнение решающей функции задается априори с точностью до неизвестных параметров. Непараметрический подход обеспечивает построение решающей функции без привлечения информации об ее структуре.
Универсальный вид решающей функции строится по обучающей выборке, а некоторые параметры этой функции (и при непараметрическом подходе тоже присутствуют параметры, которые надо подстраивать) вычисляются по экзаменующей выборке из условий наилучшей классификации. Оба эти этапа можно реализовать на одной обучающей выборке методом "скользящего экзамена". По всем точкам выборки, за исключением одной, строится решающая функция, а в этой точке (которая не участвовала в построении решающей функции) осуществляется проверка качества классификации. Затем берется другая точка и в ней вновь происходит проверка качества распознавания, осуществленного с учетом всех точек, кроме данной. Таким способом происходит проверка качества классификации во всех точках обучающей выборки. Полученный суммарный показатель качества классификации минимизируется по параметрам решающей функции.