
- •Глава 1. Предмет, метод и организация статистики………………………………………...3
- •Глава 2. Статистическое наблюдение………………………………………………………10
- •Глава 3. Статистическая сводка и группировка………………………………………….16
- •Глава 4. Графическое представление статистической информации…………………...34
- •Глава 9. Статистическое изучение динамики
- •Глава 10. Статистический анализ структуры……………………………………………123
- •Глава 11. Индексы…………………………………………………………………………...132
- •Глава 1. Предмет, метод и организация статистики
- •Статистика как наука и отрасль практической деятельности
- •Статистическая деятельность в Российской Федерации
- •Основные категории статистики
- •Глава 2. Статистическое наблюдение
- •2.1. Сущность и виды статистического наблюдения
- •2.2. План статистического наблюдения
- •2.3. Точность статистического наблюдения
- •Глава 3. Статистическая сводка и группировка
- •3.1. Задачи сводки и се содержание
- •3.2. Виды статистических группировок
- •3.3. Принципы построения статистических группировок и классификаций
- •3.4. Сравнимость статистических группировок. Вторичная группировка
- •3.5. Статистическая таблица и ее элементы
- •3.6. Виды статистических таблиц
- •3.7. Основные правила построения и анализа статистических таблиц
- •Глава 4. Графическое представление статистической информации
- •4.1. Роль и значение графического метода в статистике
- •4.2. Общие правила построения графического изображения
- •4.3. Классификация основных видов статистических графиков
- •4.4. Диаграммы сравнения
- •4.5. Диаграммы структуры
- •4.6. Диаграммы динамики
- •4.7. Статистические карты
- •Глава 5. Абсолютные, относительные и средние статистические показатели
- •5.1. Абсолютные показатели
- •5.2. Относительные показатели
- •5.3. Средние показатели
- •5.4. Структурные средние
- •Глава 6. Анализ вариации
- •6.1.Основные показатели вариации
- •6.2. Использование показателей вариации в анализе взаимосвязей
- •Глава 7. Выборочное наблюдение
- •7.1. Цели и этапы выборочного наблюдения
- •7.2. Собственно-случайная (простая случайная) выборка
- •7.3. Механическая (систематическая) выборка
- •7.4. Типическая (стратифицированная) выборка
- •7.5. Серийная выборка
- •Глава 8. Статистическое изучение взаимосвязи
- •8.1. Причинность, регрессия, корреляция
- •8.2. Парная регрессия на основе метода наименьших квадратов
- •8.3. Множественная (многофакторная) регрессия
- •8.4. Собственно-корреляционные параметрические методы изучения связи
- •8.5. Принятие решений на основе уравнений регрессии
- •8.6. Методы изучения связи качественных признаков
- •8.7. Ранговые коэффициенты связи
- •Глава 9. Статистическое изучение динамики
- •9.1 Понятие о рядах динамики и их виды
- •9.2. Сопоставимость уровней и смыкание рядов динамики
- •9.3. Аналитические показатели ряда динамики
- •9.4. Средние показатели в рядах динамики и методы их исчисления
- •9.5. Методы анализа основной тенденции (тренда) в рядах динамики
- •9.6. Методы выявления сезонной компоненты
- •9.7. Элементы прогнозирования и интерполяции
- •Глава 10. Статистический анализ структуры
- •10.1. Понятие структуры и основные направления ее исследования
- •10.2. Частные показатели структурных сдвигов
- •10.3. Обобщающие показатели структурных сдвигов
- •10.4. Показатели концентрации и централизации
- •Глава 11. Индексы
- •11.1. Общие понятия об индексах
- •11.2. Средние формы сводных индексов
- •11.3. Расчет сводных индексов за последовательные периоды
- •11.4. Индексный анализ влияния структурных изменений
9.5. Методы анализа основной тенденции (тренда) в рядах динамики
Важной задачей статистики при анализе рядов динамики является определение основной тенденции развития, присущей тому или иному ряду динамики.
Под основной тенденцией развития ряда динамики понимают изменение, определяющее общее направление развития. Это — систематическая составляющая долговременного действия. В некоторых случаях общая тенденция ясно прослеживается в динамике рассматриваемого показателя, в других случаях она может не просматриваться из-за ощутимых случайных колебаний. Например, в отдельные моменты времени сильные колебания розничных цен могут заслонить наличие тенденции к росту или снижению этого показателя. Поэтому для выявления основной тенденции развития в статистике применяются 2 группы методов:
• сглаживание или механическое выравнивание отдельных уровней ряда динамики с использованием фактических значений соседних уровней;
• выравнивание с применением кривой, проведенной между конкретными уровнями
таким образом, чтобы она отражала тенденцию, присущую ряду и одновременно
освободила его от незначительных колебаний.
Рассмотрим методы каждой группы.
Метод укрупнения интервалов основан на укрупнении периодов времени, к которым относятся уровни. Например, ряд недельных данных можно преобразовать в ряд помесячной динамики, ряд квартальных данных заменить годовыми уровнями. Уровни нового ряда могут быть получены путем суммирования уровней исходного ряда, либо могут представлять средние уровни.
Распространенным приемом при выявлении тенденции развития является сглаживание ряда динамики. Суть различных приемов сглаживания сводится к замене фактических уровней ряда расчетными уровнями, которые в меньшей степени подвержены колебаниям. Это способствует более четкому проявлению тенденции развития.
Метод простой скользящей средней. Сглаживание ряда динамики с помощью скользящей средней заключается в том, что вычисляется средний уровень из определенного числа первых по порядку уровней ряда, затем средний уровень из такого же числа уровней, начиная со второго, далее - начиная с третьего и т.д. Таким образом, при расчете средних уровней они как бы «скользят» по ряду динамики от его начала к концу, каждый раз отбрасывая один уровень вначале и добавляя один следующий. Отсюда название - скользящая средняя.
Каждое звено скользящей средней - это средний уровень за соответствующий период, который относится к середине выбранного периода, если число уровней ряда динамики нечетное.
Нахождение скользящей средней по четному числу членов рядов динамики несколько сложнее, так как средняя может быть отнесена только к середине между двумя датами, находящимся в середине интервала сглаживания. Например, средняя, найденная для четырех уровней, относится к середине между вторым и третьим, третьим и четвертым уровнями и так далее. Чтобы ликвидировать такой сдвиг, применяют так называемый способ центрирования. Центрирование заключается в нахождении средней из двух смежных скользящих средних для отнесения полученного уровня к определенной дате. При центрировании необходимо находить скользящие суммы, скользящие средние нецентрированные по этим, суммам и средние из двух смежных нецентрированных скользящих средних.
Пример. Покажем расчет скользящей средней за 3 и 4 месяца по данным, представленным в таблице 9.6.
Таблица 9.6.
Динамика продажи магнитофонов в торговой сети за 2004 год
Месяц |
Продано магнитофонов, тыс.шт. |
Трехуровневые скользящие суммы |
Трехуровневые скользящие средние |
Четырехуровневые скользящие суммы |
Четырехуровневые скользящие средние нецентриро-ванные |
Четырехуровневые скользящие средние центрированные |
А |
1 |
2 |
3 |
4 |
5 |
6 |
январь |
23 |
- |
- |
- |
|
- |
февраль |
25 |
|
23 |
|
|
|
|
|
|
|
|
23,8 |
|
март |
21 |
69 |
24 |
- |
|
24,4 |
|
|
|
|
|
25,0 |
|
апрель |
26 |
72 |
25 |
95 |
|
24,9 |
|
|
|
|
|
24,8 |
|
май |
28 |
75 |
26 |
100 |
|
25,8 |
|
|
|
|
|
26,8 |
|
июнь |
24 |
78 |
27 |
99 |
|
27,0 |
|
|
|
|
|
27,3 |
|
июль |
29 |
81 |
27 |
107 |
|
27,5 |
|
|
|
|
|
27,8 |
|
август |
28 |
81 |
29 |
109 |
|
28,4 |
|
|
|
|
|
29,0 |
|
сентябрь |
30 |
87 |
29 |
111 |
|
29,3 |
|
|
|
|
|
29,5 |
|
октябрь |
29 |
87 |
30 |
116 |
|
30,1 |
|
|
|
|
|
30,8 |
|
ноябрь |
31 |
90 |
31 |
118 |
|
- |
декабрь |
33 |
93 |
- |
123 |
|
- |
Недостаток метода простой скользящей средней состоит в том, что сглаженный ряд динамики сокращается ввиду невозможности получить сглаженные уровни для начала и конца ряда. Этот недостаток устраняется применением метода аналитического выравнивания для анализа основной тенденции.
Аналитическое выравнивание предполагает представление уровней данного ряда динамики в виде функции времени - у = f(t).
При таком подходе изменение явления связывают лишь с течением времени, считается, что влияние других факторов несущественно или косвенно сказывается через фактор времени. Правильно построенная модель должна соответствовать характеру изменения тенденции исследуемого явления. Выбранная функция позволяет получить выровненные или теоретические значения уровней ряда динамики.
Для отображения основной тенденции развития явлений во времени применяются различные функции: полиномы разной степени, экспоненты, логистические кривые и другие виды.
Полиномы имеют следующий вид:
полином первой степени y¯t=a0+a1t
полином второй степени y¯t =a0+a1t + a2t2 (9.24.)
полином третьей степени y¯t =a0 +a1t + a2t2 +a3t3
полином n-ой степени y¯t =a0 +a1t + a2t2+...+antn
Здесь а0; a1; а2; ... аn - параметры полиномов, t - условное обозначение времени. В статистической практике параметры полиномов невысокой степени иногда имеют конкретную интерпретацию характеристик динамического ряда. Так, например, параметр а0 характеризует средние условия развития ряда динамики, параметр a1 - скорость роста, параметр а2 - ускорение роста, параметр аn - изменение ускорения.
Оценка параметров в моделях (9.24) находится методом наименьших квадратов. Как известно, суть его состоит в определении таких параметров (коэффициентов), при которых сумма квадратов отклонений расчетных значений уровней от фактических значений была бы минимальной. Таким образом, эти оценки находятся в результате минимизации выражения:
(9.25.)
где yt - фактическое значение уровня ряда динамики; yt - расчетное значение; п – длина ряда динамики.
В результате минимизации выражения (9.25) получается система нормальных уравнений:
(9.26.)
где n - число членов в ряду динамики, t=l,2,...,n
Система
9.26, состоящая из «р» уравнений, содержит
в качестве известных величин ∑y,
∑yt,…,∑ytp,
то есть суммы наблюдаемых значений
уровней динамического ряда,
умноженные
на показатели времени в степени 1,2,...,р
и неизвестных величин aj.
Решение этой
системы относительно а0,
ai,...,ap
и дает искомые значения параметров.
Системы для расчета параметров полиномов невысоких степеней намного проще. Обозначим последовательные параметры полиномов как а0, a1, a2. Тогда системы нормальных уравнений для оценивания параметров прямой y¯t = а0 + a1t примет вид:
(9.27.)
для параболы второго порядка (yt=a0+a1t+a2t2):
(9.28.)
Составление нормальных уравнений можно упростить, воспользовавшись тем, что величины Yt, yt2 и т.д. не зависят от конкретных уровней ряда. Эти суммы являются функциями только числа членов в динамическом ряду. Для них получены следующие формулы:
(суммирование по t = 1+п).
Другой подход к упрощению расчетов заключается в переносе начала координат в середину ряда динамики. В этом случае упрощаются сами нормальные уравнения, а так же уменьшаются абсолютные значения величин, участвующих в расчете. Если до переноса начала координат t было равно 1,2,3,...,n, то после переноса:
для нечетного числа уровней ряда t =...;-3;-2;-1; 0; 1; 2; 3; ...
для четного числа уровней ряда t =...;-5;-3;-1; 1; 3; 5; ...
Следовательно, ∑t и все ∑tp, у которых «р» - нечетное число, равны 0. Таким образом, все члены уравнений, содержащие St с такими степенями, могут быть исключены. Системы нормальных уравнений теперь упрощаются для прямой:
(9.29.)
для параболы второго порядка:
(9.30.)
Решая системы (9.29) и (9.30), получим величины параметров соответствующих полиномов.
При сглаживании ряда динамики по показательной кривой (yt=a0a1t) для определения параметров применяется также метод наименьших квадратов, но только к логарифмам исходных данных. Так, для нахождения параметров показательной функции необходимо решить следующую систему уравнений:
(9.31.)
Если ∑t=0, то параметры уравнения lg а0 и lg a1 находим по формулам:
Пример. Необходимо определить основную тенденцию ряда динамики числа проданных квартир в N-ом регионе за 2000-2004 гг.
Таблица 9.7.
Таблица исходных и расчетных данных
-
Годы
Число проданных квартир, тыс.ед.
t
t2
yt
y¯t
А
1
2
3
4
5
2000 2001 2002 2003 2004
108 107 ПО HI 112
-2
-1
0
+1
+2
4 1 0 1 4
-216
-107 0 +111
+224
107,2 108,4 109,6 110,8 112,0
Итого
548
0
10
+12
548,0
Первые две графы - ряд динамики, подвергаемый выравниванию, дополняются графой 2, в которой показана система отсчета времени «t». Причем эта система выбирается таким образом, чтобы Yt = 0. В качестве функции выравнивания выбрано уравнение прямой линии: y¯t = а0 + att, параметры данного уравнения находим по упрощенным формулам:
Затем в графах 3 и 4 проводим необходимые расчеты и находим: Уу = 548; Yyt = 12; yt2 = 10. Отсюда:
Уравнение прямой будет иметь вид: yt = 109,6 + 1,21.
На основе этого уравнения находятся выровненные годовые уровни путем подстановки в него соответствующих значений «t» (графа 5 таблицы 9.7).
Полученное уравнение показывает, что численность проданных квартир в регионе растет в среднем на 1,2 тысяч единиц в год. Таким образом, величина параметра ai в уравнении прямой показывает среднюю величину абсолютного прироста выровненного ряда динамики.
Сумма уровней эмпирического ряда (∑yi) полностью совпала с суммой расчетных значений выровненного ряда (∑y¯e).
Результаты произведенного аналитического выравнивания ряда динамики проданных квартир за 2000-2004 гг. и фактические данные отражены на рисунке 9.2
Рис. 9.2. Динамика численности проданных квартир в N-ом регионе за 2000,-2004 гг.