
- •Глава 1. Предмет, метод и организация статистики………………………………………...3
- •Глава 2. Статистическое наблюдение………………………………………………………10
- •Глава 3. Статистическая сводка и группировка………………………………………….16
- •Глава 4. Графическое представление статистической информации…………………...34
- •Глава 9. Статистическое изучение динамики
- •Глава 10. Статистический анализ структуры……………………………………………123
- •Глава 11. Индексы…………………………………………………………………………...132
- •Глава 1. Предмет, метод и организация статистики
- •Статистика как наука и отрасль практической деятельности
- •Статистическая деятельность в Российской Федерации
- •Основные категории статистики
- •Глава 2. Статистическое наблюдение
- •2.1. Сущность и виды статистического наблюдения
- •2.2. План статистического наблюдения
- •2.3. Точность статистического наблюдения
- •Глава 3. Статистическая сводка и группировка
- •3.1. Задачи сводки и се содержание
- •3.2. Виды статистических группировок
- •3.3. Принципы построения статистических группировок и классификаций
- •3.4. Сравнимость статистических группировок. Вторичная группировка
- •3.5. Статистическая таблица и ее элементы
- •3.6. Виды статистических таблиц
- •3.7. Основные правила построения и анализа статистических таблиц
- •Глава 4. Графическое представление статистической информации
- •4.1. Роль и значение графического метода в статистике
- •4.2. Общие правила построения графического изображения
- •4.3. Классификация основных видов статистических графиков
- •4.4. Диаграммы сравнения
- •4.5. Диаграммы структуры
- •4.6. Диаграммы динамики
- •4.7. Статистические карты
- •Глава 5. Абсолютные, относительные и средние статистические показатели
- •5.1. Абсолютные показатели
- •5.2. Относительные показатели
- •5.3. Средние показатели
- •5.4. Структурные средние
- •Глава 6. Анализ вариации
- •6.1.Основные показатели вариации
- •6.2. Использование показателей вариации в анализе взаимосвязей
- •Глава 7. Выборочное наблюдение
- •7.1. Цели и этапы выборочного наблюдения
- •7.2. Собственно-случайная (простая случайная) выборка
- •7.3. Механическая (систематическая) выборка
- •7.4. Типическая (стратифицированная) выборка
- •7.5. Серийная выборка
- •Глава 8. Статистическое изучение взаимосвязи
- •8.1. Причинность, регрессия, корреляция
- •8.2. Парная регрессия на основе метода наименьших квадратов
- •8.3. Множественная (многофакторная) регрессия
- •8.4. Собственно-корреляционные параметрические методы изучения связи
- •8.5. Принятие решений на основе уравнений регрессии
- •8.6. Методы изучения связи качественных признаков
- •8.7. Ранговые коэффициенты связи
- •Глава 9. Статистическое изучение динамики
- •9.1 Понятие о рядах динамики и их виды
- •9.2. Сопоставимость уровней и смыкание рядов динамики
- •9.3. Аналитические показатели ряда динамики
- •9.4. Средние показатели в рядах динамики и методы их исчисления
- •9.5. Методы анализа основной тенденции (тренда) в рядах динамики
- •9.6. Методы выявления сезонной компоненты
- •9.7. Элементы прогнозирования и интерполяции
- •Глава 10. Статистический анализ структуры
- •10.1. Понятие структуры и основные направления ее исследования
- •10.2. Частные показатели структурных сдвигов
- •10.3. Обобщающие показатели структурных сдвигов
- •10.4. Показатели концентрации и централизации
- •Глава 11. Индексы
- •11.1. Общие понятия об индексах
- •11.2. Средние формы сводных индексов
- •11.3. Расчет сводных индексов за последовательные периоды
- •11.4. Индексный анализ влияния структурных изменений
7.5. Серийная выборка
Сущность серийной выборки заключается в собственно-случайном либо механическом отборе групп единиц (серий), внутри которых производится сплошное обследование. Единицей отбора при этой выборке является группа или серия, а не отдельная единица генеральной совокупности, как это имело место в рассматриваемых ранее выборках.
Данный способ отбора удобен в тех случаях, когда единицы генеральной совокупности изначально объединены в небольшие более или менее равновеликие группы или серии. В качестве таких серий могут выступать упаковки с определенным количеством готовой продукции, партии товара, студенческие группы, бригады и другие подобные объединения.
В большинстве случаев серийная выборка имеет не столько методологические, сколько организационные преимуществами перед другими способами формирования выборочном совокупности. Например, в Великобритании серийный отбор используется в обследованиях населения, когда серией являются домохозяйства, объединенные общим почтовым индексом. В случайном порядке производится выборка индексов и под обследование попадают все домохозяйства, имеющие индекс попавших в выборочную совокупность матовых отделений.
В связи с тем, что при серийном отборе внутри отобранных групп обследуются все исключения единицы, внутригрупповая вариация признака не отразится на ошибках Порочного наблюдения. В то же время, обследуются не все группы, а только попавшие в выборку. Следовательно на ошибках получаемых характеристик будут отражаться различия между группами, которые определяются межгрупповой дисперсией. Поэтому средняя ошибка серийной выборки определяется по формулам:
(повторный
отбор), (7.13.)
(бесповторный
отбор), (7.14.)
где: r - число отобранных серий;
R - общее число серий.
Межгрупповую дисперсию при равновеликих группах вычисляют следующим образом:
(7.15.)
где: xi - средняя i-й серии;
x - общая средняя по всей выборочной совокупности.
Рассмотрим следующий пример. Предположим, партия готовой продукции предприятия упакована в 160 ящиков по 25 изделий в каждом. В целях контроля соблюдения параметров технологического процесса проведена 5%-иая серийная выборка, в ходе которой отбирался каждый 20-й ящик. Все изделия, находящиеся в отобранных ящиках были подвергнуты сплошному обследованию, заключающемуся в определении их точного веса. Полученные результаты представлены в следующей таблице:
Таблица 7.4.
Результаты выборочного обследования готовой продукции
Номер коробки |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
Средний вес изделия в ящике, г |
563 |
545 |
548 |
560 |
555 |
561 |
547 |
552 |
С вероятностью 0,954 требуется определить границы среднего веса изделия во всей партии.
На основе приведенных в таблице внутригрупповых средних определим средний вес изделия по выборочной совокупности:
С учетом полученной средней рассчитаем межгрупповую дисперсию:
Рассчитаем среднюю и предельную ошибки выборки:
Определим границы генеральной средней:
553,9-4,4≤x¯≤553,9 + 4,4.
На основе результатов проведенных расчетов с вероятностью 0,954 можно утверждать, что средний вес изделия в целом по всей партии продукции находится в пределах от 549,5 г до 558,3 г.
Для определения необходимого объема серийной выборки при заданной предельной ошибке используются следующие формулы:
(повторный
отбор);
(бесповторный
отбор). (716)
Предположим, в рассмотренном выше примере необходимо определить границы среднего веса изделия с предельной ошибкой + 3,0 г. Используя полученные выше данные о вариации веса определим, сколько ящиков с изделиями нужно обследовать в порядке бесповторной серийной выборки, чтобы получить результат с заданной точностью и при выбранном уровне вероятности:
Выполненный расчет позволяет заключить, что для получения границ генеральной средней с заданной точностью необходимо обследовать не менее 17 ящиков с изделиями, отобранных собственно-случайным или механическим способом.