
- •Ответы на теорию по математике, с примерами Билет 1:
- •Билет 2: Векторы, линейные операции над векторами Векторы. Линейные операции над векторами. Проекция вектора на ось.
- •Билет 3: Скалярное произведение двух векторов. Основные свойства скалярного произведения. Определение скалярного произведения векторов.
- •Билет 4:Векторное произведение двух векторов и его основные свойства.
- •Билет 5: Смешанное произведение трех векторов. Свойства смешанного произведения. Условие компланарности трех векторов.
- •Билет 8: Уравнение прямой. Угол между прямыми. Условия параллельности и перпендикулярности двух прямых. (http://www.Pm298.Ru/reshenie/uravnpr7.Php там есть решения некоторых задач таких)
- •Билет 9: Угол между прямой и плоскостью (http://ege-study.Ru/materialy-ege/ugol-mezhdu-pryamoj-I-ploskostyu-perpendikulyarnost-pryamoj-I-ploskosti/
- •Билет 10: Функция, область определения функции. Способы задания функции (http://www.Zada4i.Ru/spravka/funkcii-I-ih-grafiki
- •Билет 11: Признак монотонности функции. Отыскание точек локального экстремума функции
- •Билет 12: Определение предела функции. Свойства предела. (http://matan.Isu.Ru/matan/lim_and_count.Html http://ru.Wikipedia.Org/wiki/%cf%f0%e5%e4%e5%eb_%f4%f3%ed%ea%f6%e8%e8 )
- •Билет 13: Эллипс. Свойства Эллипса
- •Билет 14: Несобственный интеграл второго рода. (http://webmath.Exponenta.Ru/s/kiselev2/node27.Htm )
- •1) . Тогда интеграл вычисляется так:
- •2) . Тогда
- •3) . Тогда
- •Билет 15: Сравнение бесконечно малых величин.
- •Билет 16: Непрерывность и точки разрыва функции (http://edu.Dvgups.Ru/metdoc/enf/vmatem/semestr1/1-13.Htm - куча примеров http://www.Math24.Ru/continuity-of-functions.Html - непрерывность)
- •Билет 17: Производная функции. Геометрический и механический смысл производной.
- •Билет 18: Первый и второй замечательные пределы. (http://webmath.Exponenta.Ru/s/kiselev1/node18.Htm - все теоремы и док-ва 1 и 2пределов замечательных)
- •Билет 19:Производные высших порядков (http://webmath.Exponenta.Ru/s/kiselev1/node45.Htm - с примерами)
- •Билет 20: Дифференциал функции и его геометрический смысл. (http://itm-x18.Narod.Ru/math/3-9.Html с примерами)
- •Билет 21: Правило Лопиталя и применение его к нахождению предела функции.( http://www.Cleverstudents.Ru/lHospitals_rule.Html - вместе с примерами)
- •В файле про предел. Билет 22: Касательная и нормаль к плоской кривой. Угол между двумя кривыми
- •Билет 23: Направление выпуклости кривой и точки перегиба. (http://glaznev.Sibcity.Ru/1kurs/der/html/lek_d8.Htm )
- •Билет 24: Первообразная функции и неопределенный интеграл. Основные формулы интегрирования. (http://math.Immf.Ru/lections/008.Html http://www.Webmath.Ru/poleznoe/integral_formules.Php )
- •Билет 25: Замена производной в неопределенном интеграле
- •Билет 26: Интегрирование по частям в неопределенном интеграле.
- •Билет 27: Определенный интеграл. Основные свойства определенного интеграла.( http://www.Mathprofi.Ru/opredelennye_integraly_primery_reshenij.Html )
- •Билет 28: Формула Ньютона-Лейбница
- •Билет 29: Интегрирование посредством замены переменной
- •Билет 30: Длина дуги плоской кривой
- •Билет 31: Несобственный интеграл первого рода (http://www.Mathprofi.Ru/nesobstvennye_integraly.Html подробности тут)
- •Билет 32: Гипербола. Свойства гиперболы.
- •Билет 33: Парабола. Свойства параболы
- •Билет 34: Формула Тейлора с остаточным членом в форме Пеано или Лагранжа
- •Билет 35: Разложение основных элементарных функций по формуле Маклорена.
Билет 28: Формула Ньютона-Лейбница
Формула Ньютона – Лейбница
,
где F(x) – первообразная для f(x),
т.е. F'(x)=f(x).
Пример.
1. Вычислить
по
формуле Ньютона – Лейбница.
Решение. Имеем
.
2. Вычислить
.
Решение. Положим
,
тогда
.
Если х=1, то t= 0, если х=е,
то t= 1. Следовательно,
.
Билет 29: Интегрирование посредством замены переменной
Вычислить заданный интеграл непосредственным интегрированием удается далеко не всегда, а иногда это связано с большими трудностями. В этих случаях применяют другие приемы. Одним из наиболее эффективных приемов является метод подстановки или замены переменной интегрирования. Сущность этого метода заключается в том, что путем введения новой переменной интегрирования удается свести заданный интеграл к новому интегралу, который сравнительно легко берется непосредственно. Если после замены переменной интеграл стал проще, то цель подстановки достигнута. В основе интегрирования методом подстановки лежит формула
Рассмотрим этот метод.
Алгоритм вычисления неопределенного интеграла методом подстановки:
Определяют, к какому табличному интегралу приводится данный интеграл (предварительно преобразовав подынтегральное выражение, если нужно).
Определяют, какую часть подынтегральной функции заменить новой переменной, и записывают эту замену.
Находят дифференциалы обеих частей записи и выражают дифференциал старой переменной (или выражение, содержащее этот дифференциал) через дифференциал новой переменной.
Производят замену под интегралом.
Находят полученный интеграл.
В результате производят обратную замену, т.е. переходят к старой переменной. Результат полезно проверять дифференцированием.
Рассмотрим примеры.
Примеры. Найти интегралы:
1)
)4
Введем подстановку:
Дифференцируя
это равенство, имеем:
Билет 30: Длина дуги плоской кривой
Вычисление длины дуги плоской кривой
Пусть известна
функция
и
требуется найти длину дуги, заданной
функцией
,
где
.
Для определения
длины дуги
необходимо
вычислить определенный
интеграл:
Рассмотрим случай параметрического задания кривой:
где
.
В этом случае для определения длина
дуги
вычисляется
определенный
интеграл:
Рассмотрим
случай, когда кривая задается в полярных
координатах
где
.
Тогда для определения длины дуги
вычисляется
следующий определенный
интеграл:
Билет 31: Несобственный интеграл первого рода (http://www.Mathprofi.Ru/nesobstvennye_integraly.Html подробности тут)
Несобственный интеграл с бесконечным пределом (ами) интегрирования
Иногда
такой несобственный интеграл еще
называют несобственным
интегралом первого рода.
В общем виде несобственный интеграл с
бесконечным пределом чаще всего выглядит
так:
.
В чем его отличие от определенного
интеграла? В верхнем пределе. Он
бесконечный:
.
Реже
встречаются интегралы с бесконечным
нижним пределом
или
с двумя бесконечными пределами:
.
Мы
рассмотрим самый популярный случай
.
Техника работы с другими разновидностями
– аналогична, и в конце параграфа будет
ссылка на такие примеры.