Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции + ответы на экзамен (3 семестр) / !!!Ответы экзамен математика 3 семестр.docx
Скачиваний:
313
Добавлен:
10.05.2014
Размер:
338.19 Кб
Скачать
  1. Определение поверхностного интеграла первого рода, его основные свойства и вычисление.

–задание поверхности.

Спроектируем S на плоскость xy, получим область D. Разобьём область D сеткой линий на части, называемые Di. Из каждой точки каждой линии проведём параллельные z линии, тогда и S разделится на Si. Составим интегральную сумму: . Устремим максимум диаметраDi к нулю: , получим:

Это поверхностный интеграл первого рода

Так считается поверхностный интеграл первого рода.

Определение вкратце. Если существует конечный предел интегральной суммы, не зависящий от способа разбиения S на элементарные участки Si и от выбора точек, то он называется поверхностным интегралом первого рода.

При переходе от переменных x и y к u и v:

Поверхностный интеграл обладает всеми свойствами обычного интеграла. См. в вопросах выше.

  1. Определение поверхностного интеграла второго рода, его основные свойства и вычисление. Связь с интегралом первого рода.

Пусть задана поверхность S, ограниченная линией L (рис. 3.10). Возьмём на поверхности S какой-нибудь контур L, не имеющий общих точек с границей L. В точке М контура L можно восстановить две нормали ик поверхностиS. Выберем какое-либо одно из этих направлений. Обводим точку M по контуру L с выбранным направлением нормали.

Если в исходное положение точка M вернётся с тем же направлением нормали (а не с противоположным), то поверхность S называют двусторонней. Мы будем рассматривать только двусторонние поверхности. Двусторонней поверхностью является всякая гладкая поверхность с уравнением .

Пусть S – двусторонняя незамкнутая поверхность, ограниченная линией L, не имеющей точек самопересечения. Выберем определённую сторону поверхности. Будем называть положительным направлением обхода контура L такое направление, при движении по которому по выбранной стороне поверхности сама поверхность остаётся слева. Двусторонняя поверхность с установленным на ней таким образом положительным направлением обхода контуров называется ориентированной поверхностью.

Перейдём к построению поверхностного интеграла второго рода. Возьмём в пространстве двустороннюю поверхность S, состоящую из конечного числа кусков, каждый из которых задан уравнением вида или является цилиндрической поверхностью с образующими, параллельными осиOz.

Пусть R(x,y,z) – функция, опредёленная и непрерывная на поверхности S. Сетью линий разбиваем S произвольным образом на n "элементарных" участков ΔS1, ΔS2, ..., ΔSi, ..., ΔSn, не имеющих общих внутренних точек. На каждом участке ΔSi произвольным образом выберем точку Mi(xi,yi,zi) (i=1,...,n). Пусть (ΔSi)xy – площадь проекции участка ΔSi на координатную плоскость Оху, взятая со знаком "+", если нормаль к поверхности S в точке Mi(xi,yi,zi) (i=1,...,n) образует с осью Oz острый угол, и со знаком "–", если этот угол тупой. Составим интегральную сумму для функции R(x,y,z) по поверхности S по переменным x,y: . Пустьλ – наибольший из диаметров ΔSi (i = 1, ..., n).

Если существует конечный предел , не зависящий от способа разбиения поверхностиS на "элементарные" участки ΔSi и от выбора точек , то он называетсяповерхностным интегралом по выбранной стороне поверхности S от функции R(x,y,z) по координатам х, у (или поверхностным интегралом второго рода) и обозначается .

Аналогично можно построить поверхностные интегралы по координатам x, z или у, z по соответствующей стороне поверхности, т. е. и.

Если существуют все эти интегралы, то можно ввести "общий" интеграл по выбранной стороне поверхности: .

Поверхностный интеграл второго рода обладает обычными свойствами интеграла. Заметим лишь, что любой поверхностный интеграл второго рода изменяет знак при перемене стороны поверхности.

Связь между поверхностными интегралами первого и второго рода.

Пусть поверхность S задана уравнением: z = f(x,y), причем f(x,y), f'x(x,y), f'y(x,y) — непрерывные функции в замкнутой области τ (проекции поверхности S на координатную плоскость Оху), а функция R(x,y,z) непрерывна на поверхности S. Нормаль к поверхности S, имеющая направляющие косинусы cos α, cos β, cos γ, выбрана к верхней стороне поверхности S. Тогда .

Для общего случая имеем:

=