Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции + ответы на экзамен (3 семестр) / !!!Ответы экзамен математика 3 семестр.docx
Скачиваний:
311
Добавлен:
10.05.2014
Размер:
338.19 Кб
Скачать
  1. Определение криволинейного интеграла второго рода, его основные свойства и вычисление. Связь с интегралом первого рода.

Пусть кривая L на координатной плоскости Оху задана параметрически уравнениями .L называется простой (плоской) незамкнутой кривой, если функции,непрерывны на и различным значениям параметра t из сегмента соответствуют различные точки,. Если точка совпадает с точкой, а остальные точки не являются кратными, тоL называется простой замкнутой кривой. Простая кривая L называется спрямляемой, если существует предел (длинa кривой L) длин ломаных, вписанных в кривую, при Δt → 0.

Пусть на кривой AB заданы две функции, P(x, y) и Q(x, y). Разобьем сегмент на n частей точками. Кривая АВ разобьется наn частей точками в направлении отA к B. Пусть – координаты точки ,,,– длина дуги. На каждой дугевозьмем некоторую точку (координаты) и составим двеинтегральные су­ммы: , . Если существует предел интегральной суммы при стремлении к нулю наибольшей из длин, то этот предел называется криволинейным интегралом второго рода . Сумманазываетсяобщим криволинейным интегралом второго рода.

Из определения криволинейного интеграла второго рода следует, что при изменении направления обхода кривой AB изменяется и знак интеграла . Аналогично вводится для пространственной кривой, заданной параметрически

Криволинейные интегралы обладают теми же свойствами, что и обычные определенные: Линейность . Аддитивность:. Монотонность: если fg, то .

Кривая L кусочно-гладкая, если она непрерывна и распадается на конечное число не имеющих общих внутренних точек кусков, каждый из которых представляет собой гладкую кривую.

Вычисление криволинейного интеграла второго рода с помощью определенного интеграла.

Если AB – кусочно-гладкая кривая, а функции Р=Р(x,y) и Q=Q(x,y) кусочно непрерывны вдоль кривой AB, то справедливо равенство: =.

Если кривая AB задана уравнением y = у(x), axb, и имеет кусочно-непрерывную производную, а функции P(x,y) и Q(x,y) кусочно непрерывны вдоль кривой AB, то имеет место равенство:=.

Связь между криволинейными интегралами первого и второго рода.

Пусть AB− кусочно гладкая кривая, функции Р=P(x,y) и Q=Q(x,y) кусочно непрерывны вдоль кривой AB и − единичный касательный вектор к кривойAB в точке M(x,y), причем направлениесоответствует направлению движения от А к В (α − угол между вектором в точкеM(x, y) и осью Oх). . Для пространственной кривой справедлива аналогичная теорема:.

Из лекций:

Это и есть криволинейный интеграл второго рода.

–то же самое, только по y.

Каждый интеграл второго рода может быть сведён к первому роду.

или

  1. Формула Грина. Условия того, что криволинейный интеграл на плоскости не зависит от пути интегрирования.

Формула Грина: Если C – замкнутая граница области D и функции P(x,y) и Q(x,y) вместе со своими частными производными первого порядка непрерывны в замкнутой области D (включая границу C), то справедлива формула Грина: , причем обход вокруг контураC выбирается так, что область D остается слева.

Из лекций: Пусть заданы функции P(x,y) и Q(x,y), которые непрерывны в области D вместе с частными производными первого порядка. Интеграл по границе (L), целиком лежащий в области D и содержащий все точки в области D: . Положительное направление контура такое, когда ограниченная часть контура находится слева.

Условие независимости криволинейного интеграла 2-го рода от пути интегрирования. Необходимым и достаточным условием того, что криволинейный интеграл первого рода, соединяющий точки M1 и M2, не зависит от пути интегрирования, а зависит только от начальной и конечной точек, является равенство: .

.

.

.