
- •1.Понятие сплошной среды .Нормальная жидкость.
- •2. Основные физические свойства жидкостей
- •3.Массовые и поверхностные силы
- •4.Идеальная и реальная жидкость.В каких случаях при практический расчётах жидкость можно считать идеальной.Ньютон. И неньютон. Жидкость.
- •5.Уравнение Эйлера
- •6.Гидрастотическое уравнеие и его свойства
- •7.Абсолютное и манометрическое давление.
- •8.Закон Паскаля. Давление жидкости на плоскую поверхность.
- •9.Установившееся и неустановивш. Движение. Напорное и безнапорное движение
- •10.Траектория движения жидкой частицы и линии тока
- •11.Смоченый периметр и гидравлический радиус
- •12.Уравнение неразрывности и его физический смысл
- •13.Уравнение Бернулли для идеальной и вязкой жидкости
- •14.Коэффициент Кориолиса
- •Физический смысл коэффициента Кориолиса.
- •15.Пьзометрическое и напорная линии. Пьзометрический и гидровлический уклон
- •16.Потери энергии в потоке вязкой жидкоти
- •17.Ламинарное и турбулентное движение и их особенности.
- •18.Зависимости для потери напора при ламинарном и турбулентном движении Потери напора при ламинарном течении жидкости
- •Потери напора при турбулентном течении жидкости
- •19.Потери напора – местные и линейные.Структура зависимости для них.
- •20.Коэфициент сопротивления и коэффициент дарси
- •21.Структура турбулентного потока
- •22.Шероховатость….
- •23.Графики Никурадзе и Мурина
- •24.Простой трубопровод. Сложная система
- •25.Понятие короткого и длинного трубопроводов Длинные трубопроводы
- •26.Гидравлтческий удар и способы его предотвращения
- •27. Понятие тонкой и толстой стенки
- •28. Истечения через отверстия.
- •29. Коэффициенты истечения
- •30. Насадки и их виды
- •31. Движения в открытых руслах
- •32. Основное уравнение безнапорного равномерного движения
- •33.Основное уравнение безнапорного равномерного движения
6.Гидрастотическое уравнеие и его свойства
Первое свойство. Гидростатическое давление направлено всегда по внутренней нормали к поверхности, на которую оно действует.
Рассмотрим силу гидростатического давления Р, приложенную в точке С под углом к поверхности А—В объема жидкости, находящегося в покое (рис. ). Тогда эту силу можно разложить на две составляющие: нормальную Рп и касательную Рt к поверхности А—В. Касательная составляющая—это равнодействующая сил трения, приходящихся на выделенную поверхность вокруг точки С. Но так как жидкость находится в покое, то силы трения отсутствуют, т. е. Рt =0.
Следовательно, сила гидростатического давления Р в точке С действует лишь в направлении силы Рп, т. е. нормально к поверхности А—В. Причем направлена она только по внутренней нормали. При предположении направления силы гидростатического давления по внешней нормали возникнут растягивающие усилия, что приведет жидкость в движение. А это противоречит условию. Таким образом, сила гидростатического давления всегда сжимающая, т. е. направлена но внутренней нормали.
Второе свойство состоит в том, что в любой точке внутри жидкости давление по всем направлениям одинаково. Иначе это свойство давления звучит так: на любую площадку внутри объёма жидкости, независимо от её угла наклона, действует одинаковое давление.
Докажем второе свойство..
Для доказательства этого свойства выделим в жидкости, находящейся в равновесии, частицу в форме треугольной призмы с основанием в виде прямоугольного треугольника А—В—С. Будем рассматривать этот объём в некоторой произвольной системе координат X,Y,Z. При этом ось у перпендикулярна плоскости. Заменим действие жидкости вне призмы на ее боковые грани гидростатическим давлением соответственно Pх, Pz, Pе.
Основное уравнение гидростатики
Определим теперь величину давления внутри покоящейся жидкости. С этой целью рассмотрим произвольную точку А, находящуюся на глубине ha. Вблизи этой точки выделим элементарную площадку dS. Если жидкость покоится, то и т. А находится в равновесии, что означает уравновешенность сил, действующих на площадку.
A – произвольная точка в жидкости,
ha – глубина т. А,
P0 - давление внешней среды,
r - плотность жидкости,
Pa – давление в т. А,
dS – элементарная площадка.
Сверху
на площадку действует внешнее давление
P0 (в случае, если свободная поверхность
граничит с атмосферой, то
)
и вес столба жидкости. Снизу – давление
в т. А. Уравнение сил, действующих
на площадку, в этих условиях примет вид:
.
Разделив это выражение на dS и учтя, что т. А выбрана произвольно, получим выражение для P в любой точке покоящейся жидкости:
;
где h – глубина жидкости, на которой определяется давление P.
Полученное выражение носит название основного уравнения гидростатики.
7.Абсолютное и манометрическое давление.
Абсолютное давление понимается как полное или истинное давление жидкости. Это измерение давления относительно идеального вакуума с отметкой 0 мм рт. ст. Не бывает давления ниже 0 мм рт. ст. Следовательно, измерение вакуума (ниже атмосферного давления) в единицах абсолютного давления всегда положительное число. Манометрическое давление - это давление, соотнесенное с атмосферным. Следовательно, манометрическое давление - это число выше или ниже атмосферного давления. Измерение давления ниже атмосферного дает отрицательное число.