
- •1.Понятие сплошной среды .Нормальная жидкость.
- •2. Основные физические свойства жидкостей
- •3.Массовые и поверхностные силы
- •4.Идеальная и реальная жидкость.В каких случаях при практический расчётах жидкость можно считать идеальной.Ньютон. И неньютон. Жидкость.
- •5.Уравнение Эйлера
- •6.Гидрастотическое уравнеие и его свойства
- •7.Абсолютное и манометрическое давление.
- •8.Закон Паскаля. Давление жидкости на плоскую поверхность.
- •9.Установившееся и неустановивш. Движение. Напорное и безнапорное движение
- •10.Траектория движения жидкой частицы и линии тока
- •11.Смоченый периметр и гидравлический радиус
- •12.Уравнение неразрывности и его физический смысл
- •13.Уравнение Бернулли для идеальной и вязкой жидкости
- •14.Коэффициент Кориолиса
- •Физический смысл коэффициента Кориолиса.
- •15.Пьзометрическое и напорная линии. Пьзометрический и гидровлический уклон
- •16.Потери энергии в потоке вязкой жидкоти
- •17.Ламинарное и турбулентное движение и их особенности.
- •18.Зависимости для потери напора при ламинарном и турбулентном движении Потери напора при ламинарном течении жидкости
- •Потери напора при турбулентном течении жидкости
- •19.Потери напора – местные и линейные.Структура зависимости для них.
- •20.Коэфициент сопротивления и коэффициент дарси
- •21.Структура турбулентного потока
- •22.Шероховатость….
- •23.Графики Никурадзе и Мурина
- •24.Простой трубопровод. Сложная система
- •25.Понятие короткого и длинного трубопроводов Длинные трубопроводы
- •26.Гидравлтческий удар и способы его предотвращения
- •27. Понятие тонкой и толстой стенки
- •28. Истечения через отверстия.
- •29. Коэффициенты истечения
- •30. Насадки и их виды
- •31. Движения в открытых руслах
- •32. Основное уравнение безнапорного равномерного движения
- •33.Основное уравнение безнапорного равномерного движения
27. Понятие тонкой и толстой стенки
Тонкой стенкой называется стенка, толщина которой меньше 0,5 диаметра и имеющая открытый острый край.
28. Истечения через отверстия.
Малое отверстие– отверстие диаметр, которого меньше 0,1 напора над этим отверстием.
Тонкой стенкой называется стенка, толщина которой меньше 0,5 диаметра и имеющая открытый острый край.
В этом случае жидкость испытывает только местные сопротивления. При подходе жидкости к отверстию траектории ее частиц не параллельны. За счет прямолинейности движения давление в струе жидкости возрастает от кромок к центру, а скорость уменьшается. В результате чего струя сжимается. На расстоянии равном половине диаметра движение жидкости становится параллельным струйным, а такое сечение называется сжатым.
Коэффициент сжатия (?) – отношение площади сжатой струи к площади отверстия.
Рассмотрим истечение жидкости через малое отверстие с тонкой стенкой при постоянном напоре в атмосферу. Для этого запишем уравненеи Бернулли для двух сечений ( 1-на поверхности воды в резервуаре, 2 — в сжатом сечении)
Плоскость отчета проходит через центр тяжести отверстия.
z1
+
+
=
z2 +
+
+
h1-2
z1 = H; z2 = 0
P1 = P2 = Pa
?1 = 0; ?2 = ?c
H
+
+
=
0+
+
+
?c
=
=
=
где
=
—
коэффициент скорости, постоянная.
Коэффициент скорости– это отношение реальной скорости в сжатом сечении к теоретической ( максимально возможной) скорости.
Q
= ?c Sc ? =
Q
= ?c ?S0 = ?S0
= ? S0
? = ?? — коэффициент расхода
Q = ? S0
Опытными исследованиями были получены средние коэффициенты при истечении в атмосферу:
Коэффициент скорости ? = 0,97
Коэффициент сжатия ?= 0,64
Коэффициент расхода ? = 0.62
Истечение через большое отверстие
Отверстие считают малым, когда его вертикальные размеры d < 0,1Н. Большим отверстием будем считать такое отверстие, для которого тот же d> 0,1Н.
Рассматривая истечение через малое отверстие, практически пренебрегли различием скоростей в разных точках сечения струи. В этом случае поступить так же мы не сможем.
Задача та же: определить расход и скорости в сжатом сечении.
Поэтому расход определяют следующим способом: выделяют бесконечно малую горизонтальную высоту dz. Таким образом, получается горизонтальная полоса с переменной длиной bz. Тогда, интегрировав по длине, можно найти элементарный расход
где Z – переменный напор по высоте отверстия, на такую глубину погружен верх выбранной полосы;
? – коэффициент расхода через отверстие;
bz – переменная длина (или ширина) полосы.
Расход Q (1) можем определить, если ? = const и известна формула bz= f(z). В общем случае, расход определяют по формуле
Если форма отверстия прямоугольная, то bz= b = const, интегрировав (2), получаем:
где Н1, Н2 – напоры на уровнях соответственно у верхней и у нижней кромок отверстия;
Нц – напор над центром отверстия;
d – высота прямоугольника.
Формула (3) имеет более упрощенный вид:
В случае истечения через круглое отверстие пределами интегрирования в (2) служат Н1= Нц – r; Н2 = Нц + r; Z = Нц – rcos?; dz = ?sin?d?; bz = 2r?sin?.
Избегая математического излишества, приведем конечную формулу:
Как видно из сравнений формул, особой разницы в формулах для расхода нет, только при больших и малых отверстиях коэффициенты расхода разные