
- •Взаимодействие научной картины мира и опытаКартина мира и опытные факты на этапе становления научной дисциплины
- •Формирование частных теоретических схем и законов
- •Первая научная революция XVII / XVIII веков
- •Вторая научная революция конца XVIII века — 1-я половина XIX века
- •Третья научная революция конец XIX века — середина XX века
- •Четвертая научная революция конец XX века[13][14]
- •1. Внутридисциплинарные механизмы научных революций.
- •Внутридисциплинарными механизмами научных революций
- •Введение нового объекта исследования
- •2. Междисциплинарные взаимодействия как фактор революционных преобразований в науке.
- •Нелинейный рост научного знания
Четвертая научная революция конец XX века[13][14]
Постнеклассическая наука — термин ввёл В. С. Степин в своей книге «Теоретическое знание»
Объекты её изучения: исторически развивающиеся системы (Земля, Вселенная и т. д.)
Синергетика, базирующаяся на представлении, что исторически развивающиеся системы совершают переход от одного относительно устойчивого состояния к другому, и при этом появляется новая уровневая организация элементов системы и их саморегуляция.
И т.д.
В динамике научного знания особую роль играет перестройка исследовательских стратегий, задаваемых основаниями науки, — научные революции. Основания науки обеспечивают рост знания до тех пор, пока общие черты системной организации изучаемых объектов учитывает картина мира, а методы освоения этих объектов соответствуют сложившимся идеалам и нормам исследования. Но новые объекты могут потребовать изменения схемы метода познавательной деятельности, представленной системой идеалов и норм исследования. В этой ситуации рост научного знания предполагает перестройку оснований науки, которая может осуществляться: во-первых, как революция, связанная с трансформацией научной картины мира без существенных изменений идеалов и норм исследования; во-вторых, как революция, в период которой вместе с научной картиной мира радикально меняются идеалы и нормы науки. История естествознания дает образцы обоих вариантов интенсивного роста знаний. Примером первого может служить переход от механистической к электродинамической картине мира, осуществленный в физике последней четверти XIX в. в связи с построением классической теории электромагнитного поля. Примером второго варианта является история квантово-релятивистской физики, характеризовавшаяся перестройкой классических идеалов объяснения, описания, обоснования и организации знаний. Перестройка оснований научной дисциплины в результате ее внутреннего развития обычно начинается с накопления фактов, которые не находят объяснения в рамках сложившейся картины мира. Пересмотр научной картины мира и идеалов познания всегда начинается с критического осмысления их природы. Если ранее они воспринимались как выражение самой сущности исследуемой реальности и процедур научного познания, то теперь осознается их относительный, преходящий характер. Философский анализ является необходимым моментом критики старых оснований научного поиска. Перестройка научных картин мира и идеалов познания требует особых идей, которые позволяют перегруппировать элементы старых представлений о реальности и процедурах ее познания, элиминировать часть из них, включить новые элементы с тем, чтобы разрешить имеющиеся парадоксы и ассимилировать накопленные факты. Такие идеи формируются в сфере философского анализа познавательных ситуаций науки.. На современном этапе развития научного знания усиливаются процессы взаимодействия наук, в связи с чем способы перестройки оснований за счет «прививки» парадигмальных установок одной науки к другой начинают все активнее влиять на внутри-дисциплинарные механизмы интенсивного роста знаний и даже управлять этими механизмами. Процесс утверждения новых оснований науки определен не только предсказанием новых фактов и генерацией конкретных теоретических моделей, но и причинами социокультурного характера. С этой точки зрения перестройка оснований науки в период научной революции представляет собой выбор особых направлений роста знаний, обеспечивающих как расширение диапазона исследования объектов, так и определенную скоррелированность динамики знания с ценностями и мировоззренческими установками исторической эпохи. В эпоху научных революций, когда осуществляется перестройка оснований науки, культура как бы отбирает из нескольких потенциально возможных линий будущей истории науки те, которые наилучшим образом соответствуют фундаментальным ценностям и мировоззренческим структурам, доминирующим в данной культуре. Итак, логика традиций и новаций указывает, с одной стороны, на необходимость сохранения преемственности, наличную совокупность методов, приемов и навыков; с другой стороны, демонстрирует потенциал, превосходящий способ репродукции накопленного опыта, предлагающий созидание нового и уникального.
Научные революции как точки бифуркации и проблема выбора стратегии научного развития
. Развитие тесно связано с понятием прогресса, которое стало приобретать категориальный и мировоззренческий смысл на историческом переходе от Античности к Средневековью. На рубеже ХVIII – ХIХ вв. развитие обретает критерий новизны. Во второй половине ХIХ в. на фоне успехов в биологии, экономической теории, в социально-историческом познании, с появлением схем о противоречивости развития, саморазвития (охватывая ареалы живой и неживой природы), а также мышления, разрабатываемых в немецкой классической философии, стало возможным научное объяснение периодически совершающихся крупных, масштабных перемен, получивших название «революция».
В жизни человечества революции случались не единожды. Можно вспомнить революции в науке, в промышленности, в информации, была даже «зеленая» революция, и все они приносили с собой радикальные качественные изменения. Однако при всем сходстве революций было и заметное различие, в частности, в их динамике. В одном случае трансформация картины мира происходила без изменения идеалов и норм исследования.. В то же время в других случаях происходили радикальные изменения в самой картине мира, в системе идеалов и норм науки. Так, открытие термодинамики и последовавшая в середине ХХ в. квантово-механическая революция привели не только к переосмыслению научной картины мира, но и к полному парадигмальному сдвигу, меняющему стандарты, идеалы и нормы исследования.. Таким образом, предпосылками научной революции можно считать, во-первых, наличие фундаментальной научной аномалии, которую нельзя объяснить имеющимися научными средствами; во-вторых, накопление этих аномалий, очевидность поиска альтернативных решений; в третьих, развитие кризисной ситуации; в-четвертых, наличие альтернативной концепции, объединяющей теории (по терминологии Куна – парадигмы). Революции, связанные со сменой парадигм, – явление редкое, так как они слишком грандиозны, сложны, детерминируются многими обстоятельствами, в том числе и психологическими.
Революционные периоды в развитии науки воспринимаются как особо значимые. Их «разрушительная» функция со временем трансформировалась в созидательную, творческую и инновационную. Научная революция стала наиболее очевидным выражением основы движущей силы научного прогресса. Однако проблема выбора стратегии научного развития не столь проста, как это может показаться. Число аксиом в этой плоскости варьируется в широких границах. Американский философ, логик, математик и естествоиспытатель Чарльз Пирс (1839–1914) считал, что познание необязательно начинается с самоочевидных истин, оно может начаться с любых положений, в том числе явно ошибочных. К. Поппер утверждал, что наука прогрессирует от одной проблемы к другой, от менее глубокой проблемы – к более глубокой. Модель роста научного знания, согласно Попперу, выглядит следующим образом[13] .
1. Наука начинается с проблем2. Научными объяснениями проблемы выступают гипотезы.3. Гипотеза является научной, если она в принципе фальсифицируема.4. Фальсификация гипотез обеспечивает устранение выявленных научных ошибок.5. Новая и более глубокая постановка проблем и выдвижение гипотез достигаются в результате критической дискуссии.6. Углубление проблем и гипотез (теорий) обеспечивает прогресс в науке, точнее, рост научного знания.
По мысли Поппера, науку понять невозможно, если исходить из отношения второгомира к первому, т.е. мира системного (искусственного) и мира социального (естественного). Ни один составной элемент науки (научные проблемы, проблемные ситуации, теории, гипотезы, рациональные схемы, критерии, методы опровержения критики) не выводим из этого отношения. Традиционная эпистемологическая концепция, развиваемая Декартом, Беркли, Юмом, Кантом, Расселом, по его мнению, потерпела поражение, поскольку брала это отношение в качестве основы философского понимания науки. Они не поняли важной роли «теоретических исследований» и «теоретической науки»; не смогли понять интерсубъективную природу научных знаний, т.е. освободить их от всякого рода субъективных привнесений. Поппер разрабатывает новую эпистемологию – эпистемологию без познающего субъекта. С ней философ связывает обоснование автономии науки. Все ее наиболее важные элементы, утверждает он, можно объяснить, не обращаясь ни к реальным субъектам в науке, ни к ее социальной функции. По мнению Поппера, исследователи изучают в науке не объекты, а научные проблемы. Они действуют не на границах «объект – субъект», а в рамках рациональных оснований науки. Философ предлагает разрабатывать трехчленную структуру научного исследования: «научная проблема – догадки (гипотезы) – опровержения». В науке, считает он, не может быть строго объективных и единообразных философско-методологических оснований. В истории науки сами ученые по-новому понимали основания науки, цели научного исследования. Наука – это лишь особый вид игры, правила которой можно формулировать, не опираясь на какие-либо независимые параметры объектов первого мира.
Высказанные Карлом Поппером идеи особенно активно разрабатывались английским математиком, логиком и философом науки Имре Лакатосом (1922–1974). Он был учеником и вместе с тем критиком Поппера. Лакатос выступил против попперовского фальцификационизма, считая что теории более устойчивы и не всякая фальсификация приведет к «перечеркиванию» проверяемой науки. Чтобы объяснить свои идеи, он вводит ряд дополнительных понятий, таких, как «твердое ядро», «защитный пояс», положительная и отрицательная эвристика в концепции.
Типы революций
Научные революции, как мы отметили, могут различаться по самым различным признакам, и поэтому не существует ни единой их классификации, ни даже типологии. Тем не менее, можно выделить несколько их типов, согласно характеру их общности, глубине раскрытия сущности изучаемых явлений и процессов, принадлежности к научной дисциплине, тем последствиям, которые они вызвали в научном мире, их влиянию на технический прогресс и духовную культуру общества и т.д.