
- •Оглавление
- •Билет 1
- •1. Определение операционной системы (ос). Место ос в программном обеспечении вычислительных систем. Эволюция ос. Особенности современного этапа развития ос.
- •2. Основные свойства файловой системы ntfs. Структура тома ntfs. Отрезки как единица дискового пространства и их адресация.
- •Билет 2
- •1. Требования, предъявляемые к корпоративным сетевым операционным системам. Серверные ос ведущих производителей.
- •3.Задача
- •Билет 3
- •1.Концепция процессов и потоков. Задания, процессы, потоки (нити), волокна и их характеристика. Взаимосвязь между заданиями, процессами, потоками и волокнами.
- •2. Свопинг и виртуальная память. Методы реализации виртуальной памяти. Сравнительная оценка методов и их применимость в современных компьютерах.
- •Билет 4
- •1.Назначение, состав и функции ос. Характеристика компонентов ос. Мультипрограммный характер современных ос.
- •2.Драйверы устройств. Виды и функции драйверов. Динамическая загрузка и выгрузка драйверов.
- •3.Задача
- •Билет 5
- •Явление фрагментации памяти. Фрагментация памяти, обусловленная методом распределения памяти. Внутренняя и внешняя фрагментация. Методы борьбы с фрагментацией памяти.
- •Согласование скоростей обмена и кэширование данных. Виды буферизации. Количественная оценка различных методов буферизации.
- •Требуется показать, что в системе может возникнуть взаимоблокировка
- •Билет 6
- •Физическая организация файловой системы. Структура дисков. Низкоуровневое и высокоуровневое форматирование.
- •Структура файловой системы на диске
- •Технология аутентификации. Сетевая аутентификация на основе многоразового пароля.
- •Билет 7
- •1.Системный подход к обеспечению безопасности компьютерных систем. Безопасность как бизнес-процесс. Политика безопасности. Базовые принципы безопасности.
- •2.Структура ядра системы unix. Состав и характеристика компонентов ядра.
- •3.Задача
- •Билет 8
- •1)Cp file1 file2 (копировать файл file1, копия – file2 )
- •Билет 9
- •Архитектуры операционных систем. Принципы разработки архитектур ос. Достоинства и недостатки различных архитектур.
- •Страничная организация памяти. Выбор размера страниц. Управление страничным обменом. Алгоритмы замены страниц.
- •Билет 10
- •Многослойная модель подсистемы ввода-вывода. Менеджер ввода-вывода. Многоуровневые драйверы.
- •Билет 11
- •1. Классификация операционных систем. Основные классификационные признаки. Примеры операционных систем.
- •2. Сегментная организация виртуальной памяти. Схема преобразования виртуальных адресов. Достоинства и недостатки сегментной организации. Сравнение со страничной организацией памяти.
- •Билет 12
- •Билет 13
- •1. Мультипрограммирование. Формы многопрограммной работы. Мультипрограммирование в системах пакетной обработки.
- •Решение
- •Билет 14
- •1. Реализация потоков в ядре, в пространстве пользователя, смешанная реализация. Преимущества и недостатки разных способов реализации потоков.
- •2. Выявление вторжений. Методы обнаружения вторжений. Аудит и его возможности. Аудит в Windows 2000.
- •Решение
- •Билет 15
- •Планирование мультипрограммных вычислительных процессов. Виды планирования. Обобщенная схема планирования с учетом очередей заданий и процессов.
- •Односторонние функции шифрования и их использования в системах обеспечения безопасности.
- •Решение
- •Билет 16
- •1. Модели процессов и потоков. Состояния процессов и потоков. Дескриптор и контекст процесса и потока. Переключение контекстов процессов и потоков.
- •2. Физическая организация файловой системы fat. Возможности файловых систем fat12, fat16 и fat32. Использование fat-систем в ос Windows, количественные характеристики.
- •Решение
- •Билет 17
- •Билет 18
- •Билет 19
- •Билет 20
- •Билет 21
- •Билет 22
- •1. Страничная организация памяти. Недостатки страничной организации и пути их преодоления. Буфер быстрой трансляции адресов. Схема преобразования виртуального адреса.
- •2. Модели процессов и потоков. Управление процессами и потоками. Основные функции управления и их содержание.
- •Билет 23
- •Билет 24
- •Основные функции подсистемы ввода-вывода. Методы организация параллельной работы процессора и устройств ввода-вывода. Прямой доступ к памяти.
- •Физическая организация и адресация файлов. Критерии физической организации. Различные способы физической организации файлов и их сравнительная оценка
- •Билет 25
- •Билет 26
- •Билет 27
- •Билет 28
- •Билет 29
- •Билет 30
- •1.Авторизация доступа и её цели. Схема авторизации.
- •2. Процессы в системе Unix. Создание дочерних процессов. Примеры.
- •Билет 31
- •Вопрос 1.
- •Вопрос 2.
- •Билет № 32
- •Вопрос 1
- •Вопрос 2.
- •Билет № 33
- •Билет № 34
- •Билет № 35
- •Билет № 36
- •Билет № 37
- •Билет № 38
- •Билет 39
- •Билет 40
- •Билет № 41
- •Билет № 42
- •Билет № 43
- •Билет 44
- •Билет №45
- •Билет №46
- •Билет №47
- •Билет 48
- •Билет 49
- •Физическая организация памяти компьютера
- •Билет № 50
- •Вопрос 1.
- •Вопрос 2.
- •Билет № 51
- •Билет № 52
- •Билет 53
- •3 Задача:
- •Билет № 54
- •Билет № 56
- •5. Возможности файловой системы ntfs 5.0 по безопасности.
- •Билет №57.
- •Билет № 58
- •Билет 59
- •Билет 60
- •Билет 61
- •Защита и восстановление ос Windows 2000. Архивация. Установочные дискеты. Безопасный режим загрузки.
- •Домены и рабочие группы в корпоративных информационных системах
- •Билет 62
- •Билет № 63
- •Взаимоблокировки процессов (тупики). Условия возникновения, методы и алгоритмы обнаружения тупиков
- •2. Свопинг и виртуальная память. Методы реализации виртуальной памяти. Сравнительная оценка методов и их применимость в современных компьютерах.
- •Задача 63
- •Билет 64
- •Процессы в системе unix. Создание дочерних процессов. Примеры.
- •Реализация потоков в ядре, в пространстве пользователя, смешанная реализация. Преимущества и недостатки разных способов реализации потоков.
Билет № 52
1) Структура ядра ОС Unix. Алгоритм планирования процессов в ОС Unix.
2) Дефрагментация дисков. Квоты (на примере Windows 2000).
Задача
Жесткий диск имеет емкость 50 Гбайт и размещение файлов в виде связанного списка индексов кластеров. Размер кластера 16 Кбайт. Определите максимальное количество файлов, которое можно разместить на диске и долю адресной информации в процентах от емкости диска.
1)
Алгоритм планирования процессов в системе UNIX использует время выполнения в качестве параметра. Каждый активный процесс имеет приоритет планирования; ядро переключает контекст на процесс с наивысшим приоритетом. При переходе выполняющегося процесса из режима ядра в режим задачи ядро пересчитывает его приоритет, периодически и в режиме задачи переустанавливая приоритет каждого процесса, готового к выполнению.
Сразу после переключения контекста ядро запускает алгоритм планирования выполнения процессов, выбирая на выполнение процесс с наивысшим приоритетом среди процессов, находящихся в состояниях "резервирования" и "готовности к выполнению, будучи загруженным в память". Рассматривать процессы, не загруженные в память, не имеет смысла, поскольку не будучи загружен, процесс не может выполняться. Если наивысший приоритет имеют сразу несколько процессов, ядро, используя принцип кольцевого списка (карусели), выбирает среди них тот процесс, который находится в состоянии "готовности к выполнению" дольше остальных. Если ни один из процессов не может быть выбран для выполнения, ЦП простаивает до момента получения следующего прерывания, которое произойдет не позже чем через один таймерный тик; после обработки этого прерывания ядро снова запустит алгоритм планирования.
алгоритм schedule_process входная информация: отсутствует выходная информация: отсутствует { выполнять пока (для запуска не будет выбран один из про- цессов) { для (каждого процесса в очереди готовых к выполнению) выбрать процесс с наивысшим приоритетом из загру- женных в память; если (ни один из процессов не может быть избран для выполнения) приостановить машину; /* машина выходит из состояния простоя по преры- /* ванию */ } удалить выбранный процесс из очереди готовых к выполне- нию; переключиться на контекст выбранного процесса, возобно- вить его выполнение; } |
2) Дефрагментация дисков.
В процессе дефрагментации кластеры диска организуются таким образом, чтобы файлы, папки и свободное пространство по возможности располагались непрервывно. В результате значительно повышается производительность файловой системы, поскольку сокращается количество операций ввода/вывода, необходимое для чтения определенного объема информации. Следует также отметить, что при дефрагментации свободное пространство не объединяется в одну непрерывную область, а располагается в нескольких областях. Это значительно скоращает время выполнения дефрагментации.
Квоты (на примере Windows 2000). Администрирование больших сетей, сопряжено с рядом сложностей. Одна из них - учет дискового пространства, занятого файлами пользователей. Пользователи хранящие свои файлы на сервере не заботятся об удалении ненужных или устаревших данных, а также об их систематизации. В результате даже на больших дисках сервера может не оказаться необходимого для работы свободного пространства. Подобная проблема решается с помощью введения квот на дисковое пространство, доступное для работы пользователю. В предыдущих версиях операционной системы Windows NT не было возможности ввести квоту на доступное дисковое пространство, и любой пользователь имел в своем распоряжении все пространство дисков сервера. В Windows 2000 системный администратор может квотировать дисковое пространство по каждому тому и для каждого пользователя. Windows 2000 ведет учет пространства, занимаемого файлами, владельцем которых является контролируемый пользователь. Поскольку квотирование выполняется по каждому тому, не имеет значения, находятся ли тома на одном жестком диске или на различных устройствах. После установки квот дискового пространства пользователь сможет хранить на томе ограниченный объем данных, в то время как на этом томе может оставаться свободное пространство. Если пользователь превысит выделенную ему квоту, в журнал событий будет внесена соответствующая запись. Затем, в зависимости от конфигурации системы, пользователь либо сможет записать информацию на том(мягкий режим), либо ему будет отказано в записи. Квотирование диска возможно при 2 условиях: присутствие раздела в формате NTFS 5.0, и наличие необходимых полномочий у пользователя устанавливающего квоты.
Задача:
1) найдем число кластеров на диске = 20гб/4кб=5242880 кластеров. Чтобы адресовать такое кол-во кластеров требует, чтобы под адрес выделялось более log2(5242880) бит, что примерно равно трем байтам. Значит для хранения адресов всех кластеров, т.е всей адресной информации надо 3байта * 5242880 = 15728640 байт. Значит доля адресной информации = Адресная информация / Объем диска = 0,07%
2) Заметим, что при таком способе организации файловой системы адресная информация хранится в самих кластерах, т.е. не занимает дополнительного места. Найдем теперь максимальное число файлов. Т.к. файл занимает минимум один кластер, то число файлов = числу кластеров = 5242880.