
- •Оглавление
- •Билет 1
- •1. Определение операционной системы (ос). Место ос в программном обеспечении вычислительных систем. Эволюция ос. Особенности современного этапа развития ос.
- •2. Основные свойства файловой системы ntfs. Структура тома ntfs. Отрезки как единица дискового пространства и их адресация.
- •Билет 2
- •1. Требования, предъявляемые к корпоративным сетевым операционным системам. Серверные ос ведущих производителей.
- •3.Задача
- •Билет 3
- •1.Концепция процессов и потоков. Задания, процессы, потоки (нити), волокна и их характеристика. Взаимосвязь между заданиями, процессами, потоками и волокнами.
- •2. Свопинг и виртуальная память. Методы реализации виртуальной памяти. Сравнительная оценка методов и их применимость в современных компьютерах.
- •Билет 4
- •1.Назначение, состав и функции ос. Характеристика компонентов ос. Мультипрограммный характер современных ос.
- •2.Драйверы устройств. Виды и функции драйверов. Динамическая загрузка и выгрузка драйверов.
- •3.Задача
- •Билет 5
- •Явление фрагментации памяти. Фрагментация памяти, обусловленная методом распределения памяти. Внутренняя и внешняя фрагментация. Методы борьбы с фрагментацией памяти.
- •Согласование скоростей обмена и кэширование данных. Виды буферизации. Количественная оценка различных методов буферизации.
- •Требуется показать, что в системе может возникнуть взаимоблокировка
- •Билет 6
- •Физическая организация файловой системы. Структура дисков. Низкоуровневое и высокоуровневое форматирование.
- •Структура файловой системы на диске
- •Технология аутентификации. Сетевая аутентификация на основе многоразового пароля.
- •Билет 7
- •1.Системный подход к обеспечению безопасности компьютерных систем. Безопасность как бизнес-процесс. Политика безопасности. Базовые принципы безопасности.
- •2.Структура ядра системы unix. Состав и характеристика компонентов ядра.
- •3.Задача
- •Билет 8
- •1)Cp file1 file2 (копировать файл file1, копия – file2 )
- •Билет 9
- •Архитектуры операционных систем. Принципы разработки архитектур ос. Достоинства и недостатки различных архитектур.
- •Страничная организация памяти. Выбор размера страниц. Управление страничным обменом. Алгоритмы замены страниц.
- •Билет 10
- •Многослойная модель подсистемы ввода-вывода. Менеджер ввода-вывода. Многоуровневые драйверы.
- •Билет 11
- •1. Классификация операционных систем. Основные классификационные признаки. Примеры операционных систем.
- •2. Сегментная организация виртуальной памяти. Схема преобразования виртуальных адресов. Достоинства и недостатки сегментной организации. Сравнение со страничной организацией памяти.
- •Билет 12
- •Билет 13
- •1. Мультипрограммирование. Формы многопрограммной работы. Мультипрограммирование в системах пакетной обработки.
- •Решение
- •Билет 14
- •1. Реализация потоков в ядре, в пространстве пользователя, смешанная реализация. Преимущества и недостатки разных способов реализации потоков.
- •2. Выявление вторжений. Методы обнаружения вторжений. Аудит и его возможности. Аудит в Windows 2000.
- •Решение
- •Билет 15
- •Планирование мультипрограммных вычислительных процессов. Виды планирования. Обобщенная схема планирования с учетом очередей заданий и процессов.
- •Односторонние функции шифрования и их использования в системах обеспечения безопасности.
- •Решение
- •Билет 16
- •1. Модели процессов и потоков. Состояния процессов и потоков. Дескриптор и контекст процесса и потока. Переключение контекстов процессов и потоков.
- •2. Физическая организация файловой системы fat. Возможности файловых систем fat12, fat16 и fat32. Использование fat-систем в ос Windows, количественные характеристики.
- •Решение
- •Билет 17
- •Билет 18
- •Билет 19
- •Билет 20
- •Билет 21
- •Билет 22
- •1. Страничная организация памяти. Недостатки страничной организации и пути их преодоления. Буфер быстрой трансляции адресов. Схема преобразования виртуального адреса.
- •2. Модели процессов и потоков. Управление процессами и потоками. Основные функции управления и их содержание.
- •Билет 23
- •Билет 24
- •Основные функции подсистемы ввода-вывода. Методы организация параллельной работы процессора и устройств ввода-вывода. Прямой доступ к памяти.
- •Физическая организация и адресация файлов. Критерии физической организации. Различные способы физической организации файлов и их сравнительная оценка
- •Билет 25
- •Билет 26
- •Билет 27
- •Билет 28
- •Билет 29
- •Билет 30
- •1.Авторизация доступа и её цели. Схема авторизации.
- •2. Процессы в системе Unix. Создание дочерних процессов. Примеры.
- •Билет 31
- •Вопрос 1.
- •Вопрос 2.
- •Билет № 32
- •Вопрос 1
- •Вопрос 2.
- •Билет № 33
- •Билет № 34
- •Билет № 35
- •Билет № 36
- •Билет № 37
- •Билет № 38
- •Билет 39
- •Билет 40
- •Билет № 41
- •Билет № 42
- •Билет № 43
- •Билет 44
- •Билет №45
- •Билет №46
- •Билет №47
- •Билет 48
- •Билет 49
- •Физическая организация памяти компьютера
- •Билет № 50
- •Вопрос 1.
- •Вопрос 2.
- •Билет № 51
- •Билет № 52
- •Билет 53
- •3 Задача:
- •Билет № 54
- •Билет № 56
- •5. Возможности файловой системы ntfs 5.0 по безопасности.
- •Билет №57.
- •Билет № 58
- •Билет 59
- •Билет 60
- •Билет 61
- •Защита и восстановление ос Windows 2000. Архивация. Установочные дискеты. Безопасный режим загрузки.
- •Домены и рабочие группы в корпоративных информационных системах
- •Билет 62
- •Билет № 63
- •Взаимоблокировки процессов (тупики). Условия возникновения, методы и алгоритмы обнаружения тупиков
- •2. Свопинг и виртуальная память. Методы реализации виртуальной памяти. Сравнительная оценка методов и их применимость в современных компьютерах.
- •Задача 63
- •Билет 64
- •Процессы в системе unix. Создание дочерних процессов. Примеры.
- •Реализация потоков в ядре, в пространстве пользователя, смешанная реализация. Преимущества и недостатки разных способов реализации потоков.
3.Задача
Применить алгоритм обнаружения взаимоблокировки к приведенным данным.
Доступность = (2100),
2001
0010
Требования = 1010 , Распределение = 2001
0120
Применим алгоритм обнаружения тупиков. У нас имеется информация о свободных (незатребованных) на текущий момент ресурсах системы. В системе присутствует 4 вида ресурсов. (2100) – вектор доступных ресурсов каждого вида. В матрицах распределения и требования каждая строка также представляет набор ресурсов, уже полученных процессом и соответственно ожидаемых им. Каждая строка матрицы представляет информацию об отдельном процессе.
Система не находится в состоянии взаимоблокировки в том случае, если имеется по крайней мере одна последовательность событий, при которой все выполняемые процессы могут быть выполнены за конечное время.
Итак, будем выбирать процесс, который при данном количестве свободных ресурсов может получить необходимое ему для выполнения количество ресурсов. Выбираем строку из матрицы Требования, которая была бы меньше строки доступных ресурсов. В данном случае возможно выделение 2 единиц первого ресурса и 1 единицы второго ресурса процессу 3 (третья строка матриц). После завершения этот процесс освободит дополнительную единицу ресурса 2 и две единицы ресурса 3, занятые им на момент начала анализа состояния системы. После завершения процесса 3 вектор доступных ресурсов составит (2100) + (0120) = (2220). Пометим этот процесс как завершенный и не участвующий в дальнейшем анализе.
Вновь ищем процесс, требования которого по предоставлению ресурсов система может выполнить, находясь в текущем состоянии. Это процесс 2 (вторая строка матриц). И после завершения он освободит дополнительно две единицы ресурса 2 и одну единицу ресурса 4. Вектор доступных ресурсов после завершения процесса 2:
(2220) + (2001) = (4221) Помечаем 2 процесс выполненным. Остался лишь процесс 1, которому теперь система может предоставить требуемое количество ресурсов. Процесс 1 успешно завершается. Помечаем его выполненным. После анализа состояния с помощью алгоритма обнаружения тупиков не осталось не помеченных нами процессов. Это означает, что существует последовательность, при которой все процессы могут быть выполнены. Следовательно система не находится в состоянии взаимоблокировки.
Билет 5
Явление фрагментации памяти. Фрагментация памяти, обусловленная методом распределения памяти. Внутренняя и внешняя фрагментация. Методы борьбы с фрагментацией памяти.
Согласование скоростей обмена и кэширование данных. Виды буферизации. Количественная оценка различных методов буферизации.
Явление фрагментации памяти. Фрагментация памяти, обусловленная методом распределения памяти. Внутренняя и внешняя фрагментация. Методы борьбы с фрагментацией памяти.
Фрагментация – процесс появления незанятых участков в памяти (как оперативной, так и виртуальной и на магнитных носителях). Вызвана наличием в каждом виде памяти деления на мелкие единицы фиксированного размера, в то время как объём информации не обязательно кратен этому делению.
Появление или непоявление фрагментации зависит от метода организации памяти.
Внутренняя фрагментация – при заполнении страниц в среднем половина последней страницы остаётся незаполненной. Эти «дыры» и есть внутренняя фрагментация.
Внешняя фрагментация – процесс, который заключается в следующем: при многократном удалении и появлении новых сегментов появляются небольшие участки незанятой памяти, которые сложно использовать (получается, что память не распределена оптимально). С ней можно бороться с помощью уплотнения (однако это требует затрат времени).
При страничной организации памяти внешняя фрагментация отсутствует, а потери из-за внутренней фрагментации, поскольку процесс занимает целое число страниц, ограничены частью последней страницы процесса.
Сегментной организации памяти присущи как внутренняя, так и внешняя фрагментации. Внутренняя фрагментация образуется вследствие того, что размер загружаемого сегмента меньше размера имеющегося свободного раздела, а внешняя вследствие того, что отсутствует участок памяти подходящего размера. Внешняя фрагментация означает, что часть процесса остается незагруженной, и его выполнение в какой–то момент времени должно быть приостановлено.
Одним из методов борьбы с фрагментацией является перемещение всех занятых участков в сторону старших либо в сторону младших адресов, так, чтобы вся свободная память образовывала единую свободную область. В дополнение к функциям, которые выполняет ОС при распределении памяти переменными разделами, в данном случае она должна еще время от времени копировать содержимое разделов из одного места памяти в другое, корректируя таблицы свободных и занятых областей. Эта процедура называется сжатием или дефрагментацией. Сжатие может выполняться либо при каждом завершении задачи, либо только тогда, когда для вновь поступившей задачи нет свободного раздела достаточного размера. В первом случае требуется меньше вычислительной работы при корректировке таблиц, а во втором - реже выполняется процедура сжатия. Так как программы перемещаются по оперативной памяти в ходе своего выполнения, то преобразование адресов из виртуальной формы в физическую должно выполняться динамическим способом.