
- •Оглавление
- •Билет 1
- •1. Определение операционной системы (ос). Место ос в программном обеспечении вычислительных систем. Эволюция ос. Особенности современного этапа развития ос.
- •2. Основные свойства файловой системы ntfs. Структура тома ntfs. Отрезки как единица дискового пространства и их адресация.
- •Билет 2
- •1. Требования, предъявляемые к корпоративным сетевым операционным системам. Серверные ос ведущих производителей.
- •3.Задача
- •Билет 3
- •1.Концепция процессов и потоков. Задания, процессы, потоки (нити), волокна и их характеристика. Взаимосвязь между заданиями, процессами, потоками и волокнами.
- •2. Свопинг и виртуальная память. Методы реализации виртуальной памяти. Сравнительная оценка методов и их применимость в современных компьютерах.
- •Билет 4
- •1.Назначение, состав и функции ос. Характеристика компонентов ос. Мультипрограммный характер современных ос.
- •2.Драйверы устройств. Виды и функции драйверов. Динамическая загрузка и выгрузка драйверов.
- •3.Задача
- •Билет 5
- •Явление фрагментации памяти. Фрагментация памяти, обусловленная методом распределения памяти. Внутренняя и внешняя фрагментация. Методы борьбы с фрагментацией памяти.
- •Согласование скоростей обмена и кэширование данных. Виды буферизации. Количественная оценка различных методов буферизации.
- •Требуется показать, что в системе может возникнуть взаимоблокировка
- •Билет 6
- •Физическая организация файловой системы. Структура дисков. Низкоуровневое и высокоуровневое форматирование.
- •Структура файловой системы на диске
- •Технология аутентификации. Сетевая аутентификация на основе многоразового пароля.
- •Билет 7
- •1.Системный подход к обеспечению безопасности компьютерных систем. Безопасность как бизнес-процесс. Политика безопасности. Базовые принципы безопасности.
- •2.Структура ядра системы unix. Состав и характеристика компонентов ядра.
- •3.Задача
- •Билет 8
- •1)Cp file1 file2 (копировать файл file1, копия – file2 )
- •Билет 9
- •Архитектуры операционных систем. Принципы разработки архитектур ос. Достоинства и недостатки различных архитектур.
- •Страничная организация памяти. Выбор размера страниц. Управление страничным обменом. Алгоритмы замены страниц.
- •Билет 10
- •Многослойная модель подсистемы ввода-вывода. Менеджер ввода-вывода. Многоуровневые драйверы.
- •Билет 11
- •1. Классификация операционных систем. Основные классификационные признаки. Примеры операционных систем.
- •2. Сегментная организация виртуальной памяти. Схема преобразования виртуальных адресов. Достоинства и недостатки сегментной организации. Сравнение со страничной организацией памяти.
- •Билет 12
- •Билет 13
- •1. Мультипрограммирование. Формы многопрограммной работы. Мультипрограммирование в системах пакетной обработки.
- •Решение
- •Билет 14
- •1. Реализация потоков в ядре, в пространстве пользователя, смешанная реализация. Преимущества и недостатки разных способов реализации потоков.
- •2. Выявление вторжений. Методы обнаружения вторжений. Аудит и его возможности. Аудит в Windows 2000.
- •Решение
- •Билет 15
- •Планирование мультипрограммных вычислительных процессов. Виды планирования. Обобщенная схема планирования с учетом очередей заданий и процессов.
- •Односторонние функции шифрования и их использования в системах обеспечения безопасности.
- •Решение
- •Билет 16
- •1. Модели процессов и потоков. Состояния процессов и потоков. Дескриптор и контекст процесса и потока. Переключение контекстов процессов и потоков.
- •2. Физическая организация файловой системы fat. Возможности файловых систем fat12, fat16 и fat32. Использование fat-систем в ос Windows, количественные характеристики.
- •Решение
- •Билет 17
- •Билет 18
- •Билет 19
- •Билет 20
- •Билет 21
- •Билет 22
- •1. Страничная организация памяти. Недостатки страничной организации и пути их преодоления. Буфер быстрой трансляции адресов. Схема преобразования виртуального адреса.
- •2. Модели процессов и потоков. Управление процессами и потоками. Основные функции управления и их содержание.
- •Билет 23
- •Билет 24
- •Основные функции подсистемы ввода-вывода. Методы организация параллельной работы процессора и устройств ввода-вывода. Прямой доступ к памяти.
- •Физическая организация и адресация файлов. Критерии физической организации. Различные способы физической организации файлов и их сравнительная оценка
- •Билет 25
- •Билет 26
- •Билет 27
- •Билет 28
- •Билет 29
- •Билет 30
- •1.Авторизация доступа и её цели. Схема авторизации.
- •2. Процессы в системе Unix. Создание дочерних процессов. Примеры.
- •Билет 31
- •Вопрос 1.
- •Вопрос 2.
- •Билет № 32
- •Вопрос 1
- •Вопрос 2.
- •Билет № 33
- •Билет № 34
- •Билет № 35
- •Билет № 36
- •Билет № 37
- •Билет № 38
- •Билет 39
- •Билет 40
- •Билет № 41
- •Билет № 42
- •Билет № 43
- •Билет 44
- •Билет №45
- •Билет №46
- •Билет №47
- •Билет 48
- •Билет 49
- •Физическая организация памяти компьютера
- •Билет № 50
- •Вопрос 1.
- •Вопрос 2.
- •Билет № 51
- •Билет № 52
- •Билет 53
- •3 Задача:
- •Билет № 54
- •Билет № 56
- •5. Возможности файловой системы ntfs 5.0 по безопасности.
- •Билет №57.
- •Билет № 58
- •Билет 59
- •Билет 60
- •Билет 61
- •Защита и восстановление ос Windows 2000. Архивация. Установочные дискеты. Безопасный режим загрузки.
- •Домены и рабочие группы в корпоративных информационных системах
- •Билет 62
- •Билет № 63
- •Взаимоблокировки процессов (тупики). Условия возникновения, методы и алгоритмы обнаружения тупиков
- •2. Свопинг и виртуальная память. Методы реализации виртуальной памяти. Сравнительная оценка методов и их применимость в современных компьютерах.
- •Задача 63
- •Билет 64
- •Процессы в системе unix. Создание дочерних процессов. Примеры.
- •Реализация потоков в ядре, в пространстве пользователя, смешанная реализация. Преимущества и недостатки разных способов реализации потоков.
Билет №46
1. Аутентификация с использованием одноразового пароля. Алгоритм Лесли Лампорта
Аутентификация (authentication) предотвращает доступ к сети нежелательных лиц и разрешает вход для легальных пользователей. Термин «аутентификация» в переводе с латинского означает «установление подлинности».
Аутентификации с многоразовыми паролями не очень надежны. Одноразовые пароли намного дешевле и проще биометрических систем (сетчатка глаза, отпечатки пальцев и т.п.), что делает эти системы перспективными.
Генерация одноразовых паролей может выполняться программно и аппаратно. С помощью аппаратного или программного ключа пользователь сообщает системе свой идентификатор.
Алгоритм Лапорта основан на необратимой функции y=f(x), обладающей тем свойством, что по заданному x легко найти y, а вот наоборот (по y найти x) невозможно.
Вход и выход должны иметь одинаковую длину, например 128 бит.
1.Пользователь выбирает секретный пароль S и число n – сколько раз будет сгенерирован одноразовый пароль.
Для удобства рассмотрим маленькое значение n=4
2. Тогда первый пароль получается с ипользованием необратимой функции f(x) n раз:
Р1 = f ( f ( f ( f (x))))
3. Второй, если применить функцию n-1 раз и т.д.
P2 = f ( f( f(x)))
Таким образом, Pi-1 = f (Pi)
Прелесть в том, что легко можно вычислить предыдущий пароль и невозможно следующий.
Сервер инициализируется числом Р0 = f (P1). Это значение хранится в файле вместе с именем пользователя и числом 1. Машина пользователя отвечает числам Р1, вычисляемым локально из S.
Затем сервер вычисляет f(P1) и сравнивает с Р0, хранящемся в файле. При следующем входе в систему пользователю посылается число 2, а машина пользователя вычисляет число Р2. А затем сервер вычисляет Р2, если значения совпадают регистрация завершается: число увеличивается на единицу, а в Р2 записывается поверх Р1.
2. Модели процессов и потоков. Управление процессами и потоками. Основные функции управления и их содержание
Одной из основных подсистем мультипрограммной ОС, непосредственно влияющей на функционирование вычислительной машины, является подсистема управления процессами и потоками, которая занимается
1. их созданием и уничтожением;
2. поддерживает изоляцию и взаимодействие между ними;
3. распределяет ресурсы системы между несколькими одновременно существующими в системе процессами и потоками.
Содержание функций управления: чтобы процесс мог быть выполнен, ОС должна назначить ему область оперативной памяти, в кот.будут размещены коды и данные процесса. А также предоставить ему необходимое кол-во процессорного времени, доступ к таким ресурсам, как файлы, устройства ввода-вывода. В обязанности ОС входит поддержание очередей заявок на ресурсы. Защита ресурсов – чтобы другие процессы не вмешивались в его работу. Синхронизация процессов (например, ожидание до окончания ввода-вывод). ОС предоставляет средства межпроцессорного взаимодействия.
Информационные структуры для управления процессами
1. Блок управления процессом (дескриптор)
2. Контекст процесса
Дескрипторы объединяются в таблицу процессов, которая хранится области ядра. На ее основании ОС осуществляет планирование и синхронизацию процессов.
В дескрипторе хранится информация необходимая ядру в течение всего ЖЦ процесса информация:
по идентификации процесса
по состоянию процесса
используемая при управлении процессом
Информация по состоянию и управлению процессом:
состояние готовности процесса
приоритет
инф-я о событиях и т.п.
Контекст процесса – информация, позволяющая система приостанавливать и возобновлять выполнения процесса с прерванного места
Содержимое регистров процессора, доступных пользователю (обычно 8 – 32 регистра и до 100 регистров в RISC – процессорах);
Содержимое счетчика команд;
Состояние управляющих регистров и регистров состояния;
Коды условия, отражающие результат выполнения последней арифметической или логической операции (например, равенство нулю, переполнение);
САМУЮ ПРОСТУЮ МОДЕЛЬ ПРОЦЕССА можно построить исходя из того что возможны 2 состояния: выполняется/не выполняется
Однако в реальности удобнее другая модель:
ВЫПОЛНЕНИЕ - активное состояние процесса, во время которого процесс обладает всеми необходимыми ресурсами и непосредственно выполняется процессором;
ОЖИДАНИЕ - пассивное состояние процесса, процесс заблокирован, он не может выполняться по своим внутренним причинам, он ждет осуществления некоторого события, например, завершения операции ввода-вывода, получения сообщения от другого процесса, освобождения какого-либо необходимого ему ресурса;
ГОТОВНОСТЬ - также пассивное состояние процесса, но в этом случае процесс заблокирован в связи с внешними по отношению к нему обстоятельствами: процесс имеет все требуемые для него ресурсы, он готов выполняться, однако процессор занят выполнением другого процесса.
В ходе жизненного цикла каждый процесс переходит из одного состояния в другое в соответствии с алгоритмом планирования процессов, реализуемым в данной операционной системе.
В состоянии ВЫПОЛНЕНИЕ в однопроцессорной системе может находиться только один процесс, а в каждом из состояний ОЖИДАНИЕ и ГОТОВНОСТЬ - несколько процессов, эти процессы образуют очереди соответственно ожидающих и готовых процессов.
Потоки и их модели.
Описатель потока (идентификатор потока, приоритет и т.п.)
атрибуты блока управления
контекст потока (равления потоком и контекст потока (в многопоточной системе процессы контекстов не имеют).
Способы реализации пакета потоков:
1) в пространстве пользователя (user - level threads – ULT);
2) в ядре (kernel – level threads – KLT).
ДОСТОИНСТВА:
можно реализовать в ОС, не поддерживающей потоки без каких-либо изменений в ОС;
высокая производительность, поскольку процессу не нужно переключаться в режим ядра и обратно;
ядро о потоках ничего не знает и управляет однопоточными процессами;
имеется возможность использования любых алгоритмов планирования потоков с учетом их специфики;
управление потоками возлагается на программу пользователя.
НЕДОСТАТКИ:
системный вызов блокирует не только работающий поток, но и все потоки того процесса, к которому он относится;
приложение не может работать в многопроцессорном режиме, так как ядро закрепляет за каждым процессом только один процессор;
при запуске одного потока ни один другой поток а рамках одного процесса не будет запущен пока первый добровольно не отдаст процессор;
внутри одного потока нет прерываний по таймеру, в результате чего невозможно создать планировщик по таймеру для поочередного выполнения потоков.
ДОСТОИНСТВА:
возможно планирование работы нескольких потоков одного и того же процесса на нескольких процессорах;
реализуется мультипрограммирование в рамках всех процессов (в том числе одного);
при блокировании одного из потоков процесса ядро может выбрать другой поток этого же (или другого процесса);
процедуры ядра могут быть многопоточными.
НЕДОСТАТКИ:
Необходимость двукратного переключения режима пользователь – ядро, ядро – пользователь для передачи управления от одного потока к другому в рамках одного и того же процесса.
Смешанная реализация.
В некоторых операционных системах применяется комбинирование потоков обоих видов. Яркий пример - операционная система Solaris. В комбинированных системах создание потоков выполняется в пользовательском пространстве, там же, где и код планирования и синхронизации потоков в приложениях. Несколько потоков на пользовательском уровне, входящих в состав приложения, отображаются в такое же или меньшее число потоков на уровне ядра. Программист может изменять число потоков на уровне ядра , подбирая его таким, которое позволяет достичь наилучших результатов.
При комб. подходе несколько потоков одного и того же приложения могут выполняться одновременно на нескольких процессорах, а блокирующие системные вызовы не приводят к блокировке всего процесса. При надлежащей реализации такой подход будет сочетать в себе преимущества подходов, в которых применяются только потоки на пользовательском уровне или только потоки на уровне ядра, сводя недостатки каждого из этих подходов к минимуму.
Задача
Чтобы не было потерь данных: (2*1024)/скорость_модема=5+1.