
- •Оглавление
- •Билет 1
- •1. Определение операционной системы (ос). Место ос в программном обеспечении вычислительных систем. Эволюция ос. Особенности современного этапа развития ос.
- •2. Основные свойства файловой системы ntfs. Структура тома ntfs. Отрезки как единица дискового пространства и их адресация.
- •Билет 2
- •1. Требования, предъявляемые к корпоративным сетевым операционным системам. Серверные ос ведущих производителей.
- •3.Задача
- •Билет 3
- •1.Концепция процессов и потоков. Задания, процессы, потоки (нити), волокна и их характеристика. Взаимосвязь между заданиями, процессами, потоками и волокнами.
- •2. Свопинг и виртуальная память. Методы реализации виртуальной памяти. Сравнительная оценка методов и их применимость в современных компьютерах.
- •Билет 4
- •1.Назначение, состав и функции ос. Характеристика компонентов ос. Мультипрограммный характер современных ос.
- •2.Драйверы устройств. Виды и функции драйверов. Динамическая загрузка и выгрузка драйверов.
- •3.Задача
- •Билет 5
- •Явление фрагментации памяти. Фрагментация памяти, обусловленная методом распределения памяти. Внутренняя и внешняя фрагментация. Методы борьбы с фрагментацией памяти.
- •Согласование скоростей обмена и кэширование данных. Виды буферизации. Количественная оценка различных методов буферизации.
- •Требуется показать, что в системе может возникнуть взаимоблокировка
- •Билет 6
- •Физическая организация файловой системы. Структура дисков. Низкоуровневое и высокоуровневое форматирование.
- •Структура файловой системы на диске
- •Технология аутентификации. Сетевая аутентификация на основе многоразового пароля.
- •Билет 7
- •1.Системный подход к обеспечению безопасности компьютерных систем. Безопасность как бизнес-процесс. Политика безопасности. Базовые принципы безопасности.
- •2.Структура ядра системы unix. Состав и характеристика компонентов ядра.
- •3.Задача
- •Билет 8
- •1)Cp file1 file2 (копировать файл file1, копия – file2 )
- •Билет 9
- •Архитектуры операционных систем. Принципы разработки архитектур ос. Достоинства и недостатки различных архитектур.
- •Страничная организация памяти. Выбор размера страниц. Управление страничным обменом. Алгоритмы замены страниц.
- •Билет 10
- •Многослойная модель подсистемы ввода-вывода. Менеджер ввода-вывода. Многоуровневые драйверы.
- •Билет 11
- •1. Классификация операционных систем. Основные классификационные признаки. Примеры операционных систем.
- •2. Сегментная организация виртуальной памяти. Схема преобразования виртуальных адресов. Достоинства и недостатки сегментной организации. Сравнение со страничной организацией памяти.
- •Билет 12
- •Билет 13
- •1. Мультипрограммирование. Формы многопрограммной работы. Мультипрограммирование в системах пакетной обработки.
- •Решение
- •Билет 14
- •1. Реализация потоков в ядре, в пространстве пользователя, смешанная реализация. Преимущества и недостатки разных способов реализации потоков.
- •2. Выявление вторжений. Методы обнаружения вторжений. Аудит и его возможности. Аудит в Windows 2000.
- •Решение
- •Билет 15
- •Планирование мультипрограммных вычислительных процессов. Виды планирования. Обобщенная схема планирования с учетом очередей заданий и процессов.
- •Односторонние функции шифрования и их использования в системах обеспечения безопасности.
- •Решение
- •Билет 16
- •1. Модели процессов и потоков. Состояния процессов и потоков. Дескриптор и контекст процесса и потока. Переключение контекстов процессов и потоков.
- •2. Физическая организация файловой системы fat. Возможности файловых систем fat12, fat16 и fat32. Использование fat-систем в ос Windows, количественные характеристики.
- •Решение
- •Билет 17
- •Билет 18
- •Билет 19
- •Билет 20
- •Билет 21
- •Билет 22
- •1. Страничная организация памяти. Недостатки страничной организации и пути их преодоления. Буфер быстрой трансляции адресов. Схема преобразования виртуального адреса.
- •2. Модели процессов и потоков. Управление процессами и потоками. Основные функции управления и их содержание.
- •Билет 23
- •Билет 24
- •Основные функции подсистемы ввода-вывода. Методы организация параллельной работы процессора и устройств ввода-вывода. Прямой доступ к памяти.
- •Физическая организация и адресация файлов. Критерии физической организации. Различные способы физической организации файлов и их сравнительная оценка
- •Билет 25
- •Билет 26
- •Билет 27
- •Билет 28
- •Билет 29
- •Билет 30
- •1.Авторизация доступа и её цели. Схема авторизации.
- •2. Процессы в системе Unix. Создание дочерних процессов. Примеры.
- •Билет 31
- •Вопрос 1.
- •Вопрос 2.
- •Билет № 32
- •Вопрос 1
- •Вопрос 2.
- •Билет № 33
- •Билет № 34
- •Билет № 35
- •Билет № 36
- •Билет № 37
- •Билет № 38
- •Билет 39
- •Билет 40
- •Билет № 41
- •Билет № 42
- •Билет № 43
- •Билет 44
- •Билет №45
- •Билет №46
- •Билет №47
- •Билет 48
- •Билет 49
- •Физическая организация памяти компьютера
- •Билет № 50
- •Вопрос 1.
- •Вопрос 2.
- •Билет № 51
- •Билет № 52
- •Билет 53
- •3 Задача:
- •Билет № 54
- •Билет № 56
- •5. Возможности файловой системы ntfs 5.0 по безопасности.
- •Билет №57.
- •Билет № 58
- •Билет 59
- •Билет 60
- •Билет 61
- •Защита и восстановление ос Windows 2000. Архивация. Установочные дискеты. Безопасный режим загрузки.
- •Домены и рабочие группы в корпоративных информационных системах
- •Билет 62
- •Билет № 63
- •Взаимоблокировки процессов (тупики). Условия возникновения, методы и алгоритмы обнаружения тупиков
- •2. Свопинг и виртуальная память. Методы реализации виртуальной памяти. Сравнительная оценка методов и их применимость в современных компьютерах.
- •Задача 63
- •Билет 64
- •Процессы в системе unix. Создание дочерних процессов. Примеры.
- •Реализация потоков в ядре, в пространстве пользователя, смешанная реализация. Преимущества и недостатки разных способов реализации потоков.
Билет № 34
Оболочка системы UNIX. Работа в оболочке. Командная строка. Основные команды работы с файлами, каналы, сценарии.
Особенности файловой системы ufs. Схема адресации ufs и ее возможности.
Задача. Компьютер имеет размер страницы 4Кбайт, запись таблицы страниц занимает 4 байт. Сколько уровней таблиц страниц потребуется для отображения 64-битового адресного пространства, если таблица страниц верхнего уровня занимает одну страницу?
1)В функциональном отношении среда пользователя обладает всеми
возможностями современной операционной системы: графическим
многооконным интерфейсом, функциональными настраиваемыми меню,
возможностями навигации по файловой системе с помощью менеджера,
технологиями drag-and-drop, различными оконными менеджерами и т.д.
Однако следует отметить, что на рабочем столе обязательно присутствует
окно, называемое терминальным, в котором присутствует базовая
пользовательская среда и можно вводить и исполнять команды. Для
интерпретации этих команд используется одна из командных оболочек (shell),
которая является, по существу, командным интерпретатором. Собственно
говоря, это первая программа, с которой приходится сталкиваться
пользователю после окончания аутентификации.
К важнейшим оболочкам относятся оболочки приведенные ниже:
Тип оболочки Исполняемые сценарии
Баурна (Bourne Shell), .profile
С (C Shell) .login и .cshrc
Корна (Korne Shell) .profile и .kshrc
BASH (Bourne Again Shell). .bash_profile и .bashrc
Язык, на котором происходит общение с интерпретатором, является
удобным средством программирования. Естественно, что он несколько
отличается для различных интерпретаторов. Программа на языке оболочки
называется сценарием (script). Сценарий представляет собой обычным
текстовый файл, в котором описана последовательность действий для
интерпретатора.
При входе в систему, в зависимости от типа оболочки исполняются
некоторые стандартные сценарии инициализации, которые настраивают
рабочий стол и окружение для конкретного пользователя.
Интерфейс командной строки, позволяет создавать множество консольных окон и действовать так, как если бы было несколько алфавитно-цифровых терминалов, на каждом из которых работала бы оболочка (shell). После запуска оболочка печатает на экране символ приглашения к вводу (% или $) и ждет, когда пользователь введет командную строку.
Примеры командных строк:
1) cp file1 file2 (копировать файл file1, копия – file2 )
2) head –20 file (печатать первые 20 строк файла file) 3) sort < in > out (программе sort взять в качестве входного файла in и направить вывод в файл out)
4) sort < in > temp; head -30 < temp; rm temp 5) sort < in | head -30 (канал) 6) sort < x | head & (фоновый процесс)
Кроме оболочки пользовательский интерфейс содержит большое число обслуживающих программ (утилит):
1. Программы (команды) управления файлами и каталогами.
2. Фильтры.
3. Средства разработки программ ( текстовые редакторы, компиляторы).
4. Текстовые процессоры.
5. Системное администрирование.
6. Разное.
Программа Функция
cat - Конкатенация нескольких файлов в стандартный выходной поток
chmod- Изменение режима защиты файла ср - Копирование файла
cut - Вырезание колонок текста
grep - Поиск определенной последовательности символов в файле
head - Извлечение из файла первых строк
is - Распечатка каталога
make - Компиляция файла для создания двоичного файла
mkdir - Создание каталога paste - Вставка колонок текста в файл
pr - Форматирование файла для печати
rm - Удаление файла
rmdir - Удаление каталога sort - Сортировка строк файла по алфавиту
tail - Извлечение из файла последних строк tr - Преобразование символа из одного набора в другой
Канал – циклический буфер, позволяющий двум процессам сообщатся в соответствии с моделью производитель/потребитель. Канал представляет собой очередь «первый вошел –первый вышел», в которой пишет один из процессов, а второй – читает.
Файлы, содержащие команды оболочки, называются сценариями оболочки. В них можно использовать конструкции if, for, while, case.
2)Файловая
система обычно размещается на дисках
или других устройствах внешней памяти,
имеющих блочную структуру. Кроме блоков,
сохраняющих каталоги и файлы, во внешней
памяти поддерживается еще несколько
служебных областей.
В мире UNIX существует несколько разных видов файловых систем со своей структурой внешней памяти. Наиболее известны традиционная файловая система UNIX System V (s5) и файловая система семейства UNIX BSD (ufs). В файловой системе ufs на логическом диске (разделе реального диска) находится последовательность секций файловой системы.
Кратко опишем суть и назначение каждой области диска.
Boot-блок содержит программу раскрутки, которая служит для первоначального запуска ОС UNIX. В файловых системах s5 реально используется boot-блок только корневой файловой системы. В дополнительных файловых системах эта область присутствует, но не используется.
Суперблок - это наиболее ответственная область файловой системы, содержащая информацию, которая необходима для работы с файловой системой в целом. Суперблок содержит список свободных блоков и свободные i-узлы (information nodes - информационные узлы). В файловых системах ufs для повышения устойчивости поддерживается несколько копий суперблока (как видно из рисунка 2.2,b, по одной копии на группу цилиндров). Каждая копия суперблока имеет размер 8196 байт, и только одна копия суперблока используется при монтировании файловой системы (см. ниже). Однако, если при монтировании устанавливается, что первичная копия суперблока повреждена или не удовлетворяет критериям целостности информации, используется резервная копия.
Блок группы цилиндров содержит число i-узлов, специфицированных в списке i-узлов для данной группы цилиндров, и число блоков данных, которые связаны с этими i-узлами. Размер блока группы цилиндров зависит от размера файловой системы. Для повышения эффективности файловая система ufs старается размещать i-узлы и блоки данных в одной и той же группе цилиндров.
Список i-узлов (ilist) содержит список i-узлов, соответствующих файлам данной файловой системы. Максимальное число файлов, которые могут быть созданы в файловой системе, определяется числом доступных i-узлов. В i-узле хранится информация, описывающая файл: режимы доступа к файлу, время создания и последней модификации, идентификатор пользователя и идентификатор группы создателя файла, описание блочной структуры файла и т.д.
Блоки данных - в этой части файловой системы хранятся реальные данные файлов. В случае файловой системы ufs все блоки данных одного файла пытаются разместить в одной группе цилиндров. Размер блока данных определяется при форматировании файловой системы командой mkfs и может быть установлен в 512, 1024, 2048, 4096 или 8192 байтов.
На схеме легко заметить, что раздел состоит из повторяющихся областей “загрузчик -суперблок - блок группы цилиндров – область индексных дескрипторов”. Это главное отличие файловой системы ufs от предыдущих версий UNIX. В этих повторяющихся последовательностях суперблок является резервной копией основной первой копией суперблока. Эта копия может быть использована при повреждении основной копии. Области же блока группы цилиндров и индексных дескрипторов содержат индивидуальные для каждой последовательности значения. Блок группы цилиндров описывает количество индексных дескрипторов и блоков данных, расположенных на данной группе цилиндров диска. Такая группировка делается для ускорения доступа, чтобы просмотр индексных дескрипторов и данных файлов, описываемых этими дескрипторами, не приводил к слишком большим перемещениям головок диска.
Основной особенностью физической организации файловой системы ufs является отделение имени файла от его характеристик, хранящихся в отдельной структуре, называемой индексным дескриптором (inode). Индексный дескриптор содержит данные о размере файла, адресную информацию, привилегии доступа к файлу и некоторую другую информацию.
Доступ к файлу осуществляется путем последовательного просмотра всей цепочки каталогов, входящих в полное имя файла, и соответствующих им индексных дескрипторов. Поиск завершается после получения всех характеристик из индексного дескриптора заданного файла.