
- •Оглавление
- •Билет 1
- •1. Определение операционной системы (ос). Место ос в программном обеспечении вычислительных систем. Эволюция ос. Особенности современного этапа развития ос.
- •2. Основные свойства файловой системы ntfs. Структура тома ntfs. Отрезки как единица дискового пространства и их адресация.
- •Билет 2
- •1. Требования, предъявляемые к корпоративным сетевым операционным системам. Серверные ос ведущих производителей.
- •3.Задача
- •Билет 3
- •1.Концепция процессов и потоков. Задания, процессы, потоки (нити), волокна и их характеристика. Взаимосвязь между заданиями, процессами, потоками и волокнами.
- •2. Свопинг и виртуальная память. Методы реализации виртуальной памяти. Сравнительная оценка методов и их применимость в современных компьютерах.
- •Билет 4
- •1.Назначение, состав и функции ос. Характеристика компонентов ос. Мультипрограммный характер современных ос.
- •2.Драйверы устройств. Виды и функции драйверов. Динамическая загрузка и выгрузка драйверов.
- •3.Задача
- •Билет 5
- •Явление фрагментации памяти. Фрагментация памяти, обусловленная методом распределения памяти. Внутренняя и внешняя фрагментация. Методы борьбы с фрагментацией памяти.
- •Согласование скоростей обмена и кэширование данных. Виды буферизации. Количественная оценка различных методов буферизации.
- •Требуется показать, что в системе может возникнуть взаимоблокировка
- •Билет 6
- •Физическая организация файловой системы. Структура дисков. Низкоуровневое и высокоуровневое форматирование.
- •Структура файловой системы на диске
- •Технология аутентификации. Сетевая аутентификация на основе многоразового пароля.
- •Билет 7
- •1.Системный подход к обеспечению безопасности компьютерных систем. Безопасность как бизнес-процесс. Политика безопасности. Базовые принципы безопасности.
- •2.Структура ядра системы unix. Состав и характеристика компонентов ядра.
- •3.Задача
- •Билет 8
- •1)Cp file1 file2 (копировать файл file1, копия – file2 )
- •Билет 9
- •Архитектуры операционных систем. Принципы разработки архитектур ос. Достоинства и недостатки различных архитектур.
- •Страничная организация памяти. Выбор размера страниц. Управление страничным обменом. Алгоритмы замены страниц.
- •Билет 10
- •Многослойная модель подсистемы ввода-вывода. Менеджер ввода-вывода. Многоуровневые драйверы.
- •Билет 11
- •1. Классификация операционных систем. Основные классификационные признаки. Примеры операционных систем.
- •2. Сегментная организация виртуальной памяти. Схема преобразования виртуальных адресов. Достоинства и недостатки сегментной организации. Сравнение со страничной организацией памяти.
- •Билет 12
- •Билет 13
- •1. Мультипрограммирование. Формы многопрограммной работы. Мультипрограммирование в системах пакетной обработки.
- •Решение
- •Билет 14
- •1. Реализация потоков в ядре, в пространстве пользователя, смешанная реализация. Преимущества и недостатки разных способов реализации потоков.
- •2. Выявление вторжений. Методы обнаружения вторжений. Аудит и его возможности. Аудит в Windows 2000.
- •Решение
- •Билет 15
- •Планирование мультипрограммных вычислительных процессов. Виды планирования. Обобщенная схема планирования с учетом очередей заданий и процессов.
- •Односторонние функции шифрования и их использования в системах обеспечения безопасности.
- •Решение
- •Билет 16
- •1. Модели процессов и потоков. Состояния процессов и потоков. Дескриптор и контекст процесса и потока. Переключение контекстов процессов и потоков.
- •2. Физическая организация файловой системы fat. Возможности файловых систем fat12, fat16 и fat32. Использование fat-систем в ос Windows, количественные характеристики.
- •Решение
- •Билет 17
- •Билет 18
- •Билет 19
- •Билет 20
- •Билет 21
- •Билет 22
- •1. Страничная организация памяти. Недостатки страничной организации и пути их преодоления. Буфер быстрой трансляции адресов. Схема преобразования виртуального адреса.
- •2. Модели процессов и потоков. Управление процессами и потоками. Основные функции управления и их содержание.
- •Билет 23
- •Билет 24
- •Основные функции подсистемы ввода-вывода. Методы организация параллельной работы процессора и устройств ввода-вывода. Прямой доступ к памяти.
- •Физическая организация и адресация файлов. Критерии физической организации. Различные способы физической организации файлов и их сравнительная оценка
- •Билет 25
- •Билет 26
- •Билет 27
- •Билет 28
- •Билет 29
- •Билет 30
- •1.Авторизация доступа и её цели. Схема авторизации.
- •2. Процессы в системе Unix. Создание дочерних процессов. Примеры.
- •Билет 31
- •Вопрос 1.
- •Вопрос 2.
- •Билет № 32
- •Вопрос 1
- •Вопрос 2.
- •Билет № 33
- •Билет № 34
- •Билет № 35
- •Билет № 36
- •Билет № 37
- •Билет № 38
- •Билет 39
- •Билет 40
- •Билет № 41
- •Билет № 42
- •Билет № 43
- •Билет 44
- •Билет №45
- •Билет №46
- •Билет №47
- •Билет 48
- •Билет 49
- •Физическая организация памяти компьютера
- •Билет № 50
- •Вопрос 1.
- •Вопрос 2.
- •Билет № 51
- •Билет № 52
- •Билет 53
- •3 Задача:
- •Билет № 54
- •Билет № 56
- •5. Возможности файловой системы ntfs 5.0 по безопасности.
- •Билет №57.
- •Билет № 58
- •Билет 59
- •Билет 60
- •Билет 61
- •Защита и восстановление ос Windows 2000. Архивация. Установочные дискеты. Безопасный режим загрузки.
- •Домены и рабочие группы в корпоративных информационных системах
- •Билет 62
- •Билет № 63
- •Взаимоблокировки процессов (тупики). Условия возникновения, методы и алгоритмы обнаружения тупиков
- •2. Свопинг и виртуальная память. Методы реализации виртуальной памяти. Сравнительная оценка методов и их применимость в современных компьютерах.
- •Задача 63
- •Билет 64
- •Процессы в системе unix. Создание дочерних процессов. Примеры.
- •Реализация потоков в ядре, в пространстве пользователя, смешанная реализация. Преимущества и недостатки разных способов реализации потоков.
Билет 22
Страничная организация памяти. Недостатки страничной организации и пути их преодоления. Буфер быстрой трансляции адресов. Схема преобразования виртуального адреса.
Модели процессов и потоков. Управление процессами и потоками. Основные функции управления и их содержание.
1. Страничная организация памяти. Недостатки страничной организации и пути их преодоления. Буфер быстрой трансляции адресов. Схема преобразования виртуального адреса.
При использовании виртуальной памяти каждому процессу выделяется определенное виртуальное адресное пространство. Это пространство делится на части фиксированного размера - виртуальные страницы. Вся оперативная память машины также делится на части такого же размера –физические страницы.
Размер страниц выбирается кратным степени двойки (т.е.-512,1024,4096). Обычно -4Кб.
Так как большинство современных машин – 32 разрядные, то они могу адресовать 4Гб. данных (максимальный размер виртуальной памяти). На адрес страницы уходит 4Гб/4Кб=220 – 20 бит. Другие 12 бит идут на смещение внутри страницы (4Кб=212байт)
При создании процесса ОС загружает в оперативку(физическую память) несколько его виртуальных страниц и для каждого процесса создается таблица страниц – структура, содержащая записи обо всех виртуальных страницах процесса. Запись включает физический адрес страницы, в которую загружена данная виртуальная страница и несколько признаков (признак присутствия страницы в физ.памяти, признаки модификации и доступа).
Когда процессу нужны данные он обращается по виртуальному адресу. Система смотрит в таблицу страниц: если страница с таким виртуальным адресом находится в физической памяти, то необходимые данные предоставляются процессу. Если данная страница выгружена на жесткий диск, то происходит страничное прерывание:
процессор приостанавливает данный процесс и переходит к следующему
Если в памяти нет свободного места – из нее выгружается страницы, которые вероятно в ближайшее время не будут использоватся.
На свободное место загружаются необходимые страницы с жесткого диска.
Процессор возобнавляет выполнение процесса
Буфер быстрой трансляции адресов.
Страничная организация памяти, по сути, удваивает время обращения к памяти. Для преодоления этой проблемы используют специальный высокоскоростной кэш для записей таблицы страниц, который обычно называют буфером быстрой трансляции адресов – TLB. Этот кэш функционирует так же, как и обычный кэш памяти, и содержит те записи таблицы страниц, которые использовались последними.
Вычисление физического адреса по логическому (виртуальному)
Виртуальный адрес – порядковый номер виртуальной страницы + смещение в ней.
Физический адрес – порядковый номер физической страницы + смещение в ней.
Т.к. размер страниц выбирается кратным степени 2 (4Кб - 212) то смещение – это последние разряды в виртуальном адресе (в данном случае – последние 12 бит.)
В данном случае первые 20 разрядов – адрес виртуальной страницы. По этому адресу(т.е. по старшим 20битам) в таблице страниц процесса находится адрес нужной физической страницы. Смещения в виртуальной и физической страницах равны, т.е. при преобразовании виртуальных адресов в физические идет только преобразование адреса страницы.
Механизм преобразования виртуальных адресов в физические:
Загружается адрес таблица страниц процесса (AT – адрес таблицы страниц).
От виртуального адреса отбрасываются младшие разряды (9 для страницы в 512байт)
Оставшиеся старшие разряды – номер виртуальной страницы (р)
По данным адресам таблицы страниц и виртуальной страницы на находится нужная запись: АТ+р*(длина записи).
В данной записи считывается адрес физической страницы и к нему прибавлятеся смещение. Физический адрес готов.
Недостатки страничной организации памяти: Сложен совместный доступ пользователей к процедурам, наличие внешней фрагментации.