
- •Оглавление
- •Билет 1
- •1. Определение операционной системы (ос). Место ос в программном обеспечении вычислительных систем. Эволюция ос. Особенности современного этапа развития ос.
- •2. Основные свойства файловой системы ntfs. Структура тома ntfs. Отрезки как единица дискового пространства и их адресация.
- •Билет 2
- •1. Требования, предъявляемые к корпоративным сетевым операционным системам. Серверные ос ведущих производителей.
- •3.Задача
- •Билет 3
- •1.Концепция процессов и потоков. Задания, процессы, потоки (нити), волокна и их характеристика. Взаимосвязь между заданиями, процессами, потоками и волокнами.
- •2. Свопинг и виртуальная память. Методы реализации виртуальной памяти. Сравнительная оценка методов и их применимость в современных компьютерах.
- •Билет 4
- •1.Назначение, состав и функции ос. Характеристика компонентов ос. Мультипрограммный характер современных ос.
- •2.Драйверы устройств. Виды и функции драйверов. Динамическая загрузка и выгрузка драйверов.
- •3.Задача
- •Билет 5
- •Явление фрагментации памяти. Фрагментация памяти, обусловленная методом распределения памяти. Внутренняя и внешняя фрагментация. Методы борьбы с фрагментацией памяти.
- •Согласование скоростей обмена и кэширование данных. Виды буферизации. Количественная оценка различных методов буферизации.
- •Требуется показать, что в системе может возникнуть взаимоблокировка
- •Билет 6
- •Физическая организация файловой системы. Структура дисков. Низкоуровневое и высокоуровневое форматирование.
- •Структура файловой системы на диске
- •Технология аутентификации. Сетевая аутентификация на основе многоразового пароля.
- •Билет 7
- •1.Системный подход к обеспечению безопасности компьютерных систем. Безопасность как бизнес-процесс. Политика безопасности. Базовые принципы безопасности.
- •2.Структура ядра системы unix. Состав и характеристика компонентов ядра.
- •3.Задача
- •Билет 8
- •1)Cp file1 file2 (копировать файл file1, копия – file2 )
- •Билет 9
- •Архитектуры операционных систем. Принципы разработки архитектур ос. Достоинства и недостатки различных архитектур.
- •Страничная организация памяти. Выбор размера страниц. Управление страничным обменом. Алгоритмы замены страниц.
- •Билет 10
- •Многослойная модель подсистемы ввода-вывода. Менеджер ввода-вывода. Многоуровневые драйверы.
- •Билет 11
- •1. Классификация операционных систем. Основные классификационные признаки. Примеры операционных систем.
- •2. Сегментная организация виртуальной памяти. Схема преобразования виртуальных адресов. Достоинства и недостатки сегментной организации. Сравнение со страничной организацией памяти.
- •Билет 12
- •Билет 13
- •1. Мультипрограммирование. Формы многопрограммной работы. Мультипрограммирование в системах пакетной обработки.
- •Решение
- •Билет 14
- •1. Реализация потоков в ядре, в пространстве пользователя, смешанная реализация. Преимущества и недостатки разных способов реализации потоков.
- •2. Выявление вторжений. Методы обнаружения вторжений. Аудит и его возможности. Аудит в Windows 2000.
- •Решение
- •Билет 15
- •Планирование мультипрограммных вычислительных процессов. Виды планирования. Обобщенная схема планирования с учетом очередей заданий и процессов.
- •Односторонние функции шифрования и их использования в системах обеспечения безопасности.
- •Решение
- •Билет 16
- •1. Модели процессов и потоков. Состояния процессов и потоков. Дескриптор и контекст процесса и потока. Переключение контекстов процессов и потоков.
- •2. Физическая организация файловой системы fat. Возможности файловых систем fat12, fat16 и fat32. Использование fat-систем в ос Windows, количественные характеристики.
- •Решение
- •Билет 17
- •Билет 18
- •Билет 19
- •Билет 20
- •Билет 21
- •Билет 22
- •1. Страничная организация памяти. Недостатки страничной организации и пути их преодоления. Буфер быстрой трансляции адресов. Схема преобразования виртуального адреса.
- •2. Модели процессов и потоков. Управление процессами и потоками. Основные функции управления и их содержание.
- •Билет 23
- •Билет 24
- •Основные функции подсистемы ввода-вывода. Методы организация параллельной работы процессора и устройств ввода-вывода. Прямой доступ к памяти.
- •Физическая организация и адресация файлов. Критерии физической организации. Различные способы физической организации файлов и их сравнительная оценка
- •Билет 25
- •Билет 26
- •Билет 27
- •Билет 28
- •Билет 29
- •Билет 30
- •1.Авторизация доступа и её цели. Схема авторизации.
- •2. Процессы в системе Unix. Создание дочерних процессов. Примеры.
- •Билет 31
- •Вопрос 1.
- •Вопрос 2.
- •Билет № 32
- •Вопрос 1
- •Вопрос 2.
- •Билет № 33
- •Билет № 34
- •Билет № 35
- •Билет № 36
- •Билет № 37
- •Билет № 38
- •Билет 39
- •Билет 40
- •Билет № 41
- •Билет № 42
- •Билет № 43
- •Билет 44
- •Билет №45
- •Билет №46
- •Билет №47
- •Билет 48
- •Билет 49
- •Физическая организация памяти компьютера
- •Билет № 50
- •Вопрос 1.
- •Вопрос 2.
- •Билет № 51
- •Билет № 52
- •Билет 53
- •3 Задача:
- •Билет № 54
- •Билет № 56
- •5. Возможности файловой системы ntfs 5.0 по безопасности.
- •Билет №57.
- •Билет № 58
- •Билет 59
- •Билет 60
- •Билет 61
- •Защита и восстановление ос Windows 2000. Архивация. Установочные дискеты. Безопасный режим загрузки.
- •Домены и рабочие группы в корпоративных информационных системах
- •Билет 62
- •Билет № 63
- •Взаимоблокировки процессов (тупики). Условия возникновения, методы и алгоритмы обнаружения тупиков
- •2. Свопинг и виртуальная память. Методы реализации виртуальной памяти. Сравнительная оценка методов и их применимость в современных компьютерах.
- •Задача 63
- •Билет 64
- •Процессы в системе unix. Создание дочерних процессов. Примеры.
- •Реализация потоков в ядре, в пространстве пользователя, смешанная реализация. Преимущества и недостатки разных способов реализации потоков.
Билет 18
Приоритетные алгоритмы планирования. Схема алгоритма приоритетного планирования. Пример планирования в Windows 2000.
NTFS
Одной из важных концепций, лежащих в основе многих вытесняющих алгоритмов планирования, является приоритетное обслуживание. Приоритетное обслуживание предполагает наличие у потоков некоторой изначально известной характеристики — приоритета, на основании которой определяется порядок их выполнения. Приоритет — это число, характеризующее степень привилегированности потока при использовании ресурсов вычислительной машины, в частности процессорного времени: чем выше приоритет, тем выше привилегии, тем меньше времени будет проводить поток в очередях.
В большинстве операционных систем, поддерживающих потоки, приоритет потока непосредственно связан с приоритетом процесса, в рамках которого выполняется данный поток. Приоритет процесса назначается операционной системой при его создании. Значение приоритета включается в описатель процесса и используется при назначении приоритета потокам этого процесса. Во многих ОС предусматривается возможность изменения приоритетов в течение жизни потока. Изменение приоритета могут происходить по инициативе самого потока, когда он обращается с соответствующим вызовом к операционной системе, или по инициативе пользователя, когда он выполняет соответствующую команду. Кроме того, ОС сама может изменять приоритеты потоков в зависимости от ситуации, складывающейся в системе. В последнем случае приоритеты называются динамическими в отличие от неизменяемых, фиксированных, приоритетов.
От того, какие приоритеты назначены потокам, существенно зависит эффективность работы всей вычислительной системы.
Существуют две разновидности приоритетного планирования: обслуживание с относительными приоритетами и обслуживание с абсолютными приоритетами.
В обоих случаях выбор потока на выполнение из очереди готовых осуществляется одинаково: выбирается поток, имеющий наивысший приоритет. Однако проблема определения момента смены активного потока решается по-разному. В системах с относительными приоритетами активный поток выполняется до тех пор, пока он сам не покинет процессор, перейдя в состояние ожидания (или же произойдет ошибка, или поток завершится). На рис. 4.10, а показан граф состояний потока в системе с относительными приоритетами.
В системах с абсолютными приоритетами выполнение активного потока прерывается кроме указанных выше причин, еще при одном условии: если в очереди готовых потоков появился поток, приоритет которого выше приоритета активного потока. В этом случае прерванный поток переходит в состояние готовности (рис. 4.10, б).
В системах, в которых планирование осуществляется на основе относительных приоритетов, минимизируются затраты на переключения процессора с одной работы на другую. С другой стороны, здесь могут возникать ситуации, когда одна задача занимает процессор долгое время. Ясно, что для систем разделения времени и реального времени такая дисциплина обслуживания не подходит: интерактивное приложение может ждать своей очереди часами, пока вычислительной задаче не потребуется ввод-вывод. А вот в системах пакетной обработки (в том числе известной ОС OS/360) относительные приоритеты используются широко.
В системе Windows 2000 приоритетов и два класса потоков — потоки реального времени и потоки с переменными приоритетами. Диапазон от 1 до 15 включительно отведен для потоков с переменными приоритетами, а от 16 до 31 — для более критичных ко времени потоков реального времени (приоритет 0 зарезервирован для системных целей).
При создании процесса он в зависимости от класса получает по умолчанию базовый приоритет в верхней или нижней части диапазона. Базовый приоритет процесса в дальнейшем может быть повышен или понижен операционной системой.
ОС может повышать приоритет потока (который в этом случае называется динамическим) в тех случаях, когда поток не полностью использовал отведенный ему квант, или понижать приоритет, если квант был использован полностью. ОС наращивает приоритет дифференцирование в зависимости от того, какого типа событие не дало потоку полностью использовать квант.
2. Файловая система NTFS была разработана в качестве основной файловой системы для ОС Windows NT в начале 90-х годов с учетом опыта разработки файловых систем FAT и HPFS (основная файловая система для OS/2), а также других существовавших в то время файловых систем. Основными отличительными свойствами NTFS являются:
поддержка больших файлов и больших дисков объемом до 2 байт;
восстанавливаемость после сбоев и отказов программ и аппаратуры управления дисками;
высокая скорость операций, в том числе и для больших дисков;
низкий уровень фрагментации, в том числе и для больших дисков;
гибкая структура, допускающая развитие за счет добавления новых типов записей и атрибутов файлов с сохранением совместимости с предыдущими версиями ФС;
устойчивость к отказам дисковых накопителей;
поддержка длинных символьных имен;
контроль доступа к каталогам и отдельным файлам.
Структура тома NTFS
В отличие от разделов FAT и s5/ufs все пространство тома1 NTFS представляет собой либо файл, либо часть файла. Основой структуры тома NTFS является главная таблица файлов (Master File Table, MFT), которая содержит по крайней мере одну запись для каждого файла тома, включая одну запись для самой себя. Каждая запись MFT имеет фиксированную длину, зависящую от объема диска, — 1,2 или 4 Кбайт. Для большинства дисков, используемых сегодня, размер записи MFT равен 2 Кбайт, который мы далее будет считать размером записи по умолчанию.
Все файлы на томе NTFS идентифицируются номером файла, который определяется позицией файла в MFT. Этот способ идентификации файла близок к способу, используемому в файловых системах s5 и ufs, где файл однозначно идентифицируется номером его записи в области индексных дескрипторов.
Весь том NTFS состоит из последовательности кластеров, что отличает эту файловую систему от рассмотренных ранее, где на кластеры делилась только область данных. Порядковый номер кластера в томе NTFS называется логическим номером кластера (Logical Cluster Number, LCN). Файл NTFS также состоит из последовательности кластеров, при этом порядковый номер кластера внутри файла называется виртуальным номером кластера (Virtual Cluster Number, VCN).
В Windows NT логический раздел принято называть томом.
Базовая единица распределения дискового пространства для файловой системы NTFS — непрерывная область кластеров, называемая отрезком. В качестве адреса отрезка NTFS использует логический номер его первого кластера, а также количество кластеров в отрезке k, то есть пара (LCN, k). Таким образом, часть файла, помещенная в отрезок и начинающаяся с виртуального кластера VCN, характеризуется адресом, состоящим из трех чисел: (VCN, LCN, k).
Для хранения номера кластера в NTFS используются 64-разрядные указатели, что дает возможность поддерживать тома и файлы размером до 264 кластеров. При размере кластера в 4 Кбайт это позволяет использовать тома и файлы, состоящие из 64 миллиардов килобайт.
В NTFS файл целиком размещается в записи таблицы MFT, если это позволяет сделать его размер. В том же случае, когда размер файла больше размера записи MFT, в запись помещаются только некоторые атрибуты файла, а остальная часть файла размещается в отдельном отрезке тома (или нескольких отрезках). Часть файла, размещаемая в записи MFT, называется резидентной частью, а остальные части — нерезидентными. Адресная информация об отрезках, содержащих нерезидентные части файла, размещается в атрибутах резидентной части.
Некоторые системные файлы являются полностью резидентными, а некоторые имеют и нерезидентные части, которые располагаются после первого отрезка MFT. Нулевая запись MFT содержит описание самой MFT, в том числе и такой ее важный атрибут, как адреса всех ее отрезков. После форматирования MFT состоит из одного отрезка, но после создания первого же несистемного файла для хранения его атрибутов требуется еще один отрезок, так как изначально непрерывная последовательность кластеров MFT уже завершена системными файлами.
Из приведенного описания видно, что сама таблица MFT рассматривается как файл, к которому применим метод размещения в томе в виде набора произвольно расположенных нескольких отрезков.
Задача
Процесс обращается к страницам A, B, C, D, и E в следующем порядке:
A B C D A B E A B C D E
Примените алгоритм замещения “первым вошел – первым вышел” и определите количество пересылок страниц в процессе выполнения указанных обращений, если работа выполняется с тремя изначально пустыми кадрами оперативной памяти. Решите ту же задачу для четырех кадров.