- •1. Системный подход к процессам и объектам омд
- •1.1. Задачи анализа и синтеза процессов и объектов омд,
- •1.1.1. Определение понятия «система»
- •1.2. Системный подход к анализу и синтезу процессов и объектов омд, как сложных систем.
- •1.2.1. Основные понятия и определения
- •1.2.2. Этапы системного анализа и их детализация
- •2. Математические модели в омд.
- •2.1. Определение и назначение моделирования.
- •2.2. Системные принципы построения математических моделей
- •2.3 Этапы построения математической модели
- •2.3.1. Обследование объекта моделирования
- •2.3.2. Концептуальная постановка задачи моделирования
- •2.3.3. Математическая постановка задачи моделирования
- •2.3.4. Выбор метода решения задачи
- •2.3.5. Реализация математической модели на эвм
- •2.3.6. Проверка адекватности моделей
- •2.4. Разработка структуры математических моделей функционирования технологических процессов омд
- •2.4.1. Классификация технологических процессов и систем
- •2.4.2. Представления технологических процессов и систем
- •3. Вычислительный эксперимент в омд
- •3.1. Предмет и теоретические основы вычислительного эксперимента
- •3.2. Обработка экспериментальных данных методом
- •Применение численных методов для анализа процессов и объектов омд
- •4.1. Проекционные методы решения задач омд
- •4.1.1. Метод Ритца
- •Метод Галеркина
- •4.2. Метод конечных элементов
- •4.3. Стандартные пакеты прикладных программ
- •4.3.1. Краткий обзор универсального математического процессора Mathсad
- •Пакеты программ методов конечных элементов
- •5. Постановка и методы решения задач Оптимизации
- •5.1. Общая постановка задач оптимизации
- •5.2. Численные методы решения задач одномерной оптимизации
- •Методы поиска экстремума функции одной переменной
- •5.3. Методы минимизации функций многих переменных
- •5.3.1. Методы спуска
- •Метод покоординатного спуска.
- •6. Общие сведения о сапр в омд
- •6.1. Общие сведения о структуре и возможностях сапр
- •Расчет усилий при прессовании с применением форкамерного инструмента включает выполнение следующих процедур:
Применение численных методов для анализа процессов и объектов омд
Задачи механики сплошных сред сводятся к дифференциальным уравнениям в частных производных, которые необходимо интегрировать при определенных краевых условиях [12, 13, 16, 17]. Приближенное решение краевых задач во многих случаях удается получить с применением так называемых прямых методов [29]. Прямыми называются методы приближенного решения задач теории дифференциальных и интегральных уравнений, которые сводят эти задачи к конечным системам алгебраических уравнений. В теории и практике применения прямых методов особое место занимают два метода: метод Ритца и метод Галеркина.
В первом из них задача интегрирования дифференциального уравнения заменяется некоторой равносильной вариационной задачей. Второй основан на ортогонализации невязки операторного уравнения по отношению к координатной системе функций и, вообще говоря, не связан с какой либо вариационной задачей.
Достаточно подробно данные методы и применение их для решения задач ОМД рассмотрены в работах [13, 15, 16, 17, 29].
4.1. Проекционные методы решения задач омд
4.1.1. Метод Ритца
Пусть требуется найти минимум некоторого функционала J(x) с областью определения DJ.
Выберем координатную систему функций φ1, φ2, …, φn, удовлетворяющую следующим требованиям [29]:
элементы координатной системы, взятые в любом конечном количестве, линейно независимы;
координатная система полна в некоторой метрике, определенной на области DJ;
при любых значениях постоянных а1, а2,…, аn элемент
(4.1)
принадлежит DJ и выражение J(xn) имеет смысл.
Рассматривая его как функцию конечного числа переменных а1, а2,…, аn, найдем те значения, при которых J(xn) достигает минимума. С этой целью необходимо решить следующую систему уравнений
(4.2)
(необходимое условие экстремума J(xn)). Убедившись, что найденные значения постоянных аi действительно реализуют минимум величины J, подставим эти значения в выражение (4.1). В результате получим элемент xn, который назовем n–м приближением по Ритцу решения данной вариационной задачи.
Для неоднородных граничных условий можно искать n–е приближение по Ритцу в следующем виде
(4.3)
где элемент φ0 удовлетворяет заданным граничным условиям, а φi удовлетворяет соответствующим однородным граничным условиям.
Решение системы уравнений (4.2) является в общем случае весьма сложной задачей. Она существенно упрощается, если J(xn) – квадратичный функционал, в этом случае уравнения (4.2) линейны относительно аi.
На практике во многих случаях приходится ограничиваться сравнительно небольшим числом членов рядов (4.1) и (4.2), поэтому удачный выбор координатных функций имеет решающее значение. При решении вариационных задач обработки металлов давлением для выбора координатных функций обычно используют результаты экспериментальных исследований.
Пример. Рассмотрим расчет деформированного состояния полосы прямоугольного сечения при кузнечной протяжке (рис. 2.9) при указанных там граничных условиях. Модель построим для поперечного сечения yOz.
Кривую упрочнения Т(Н) аппроксимируем следующей функцией [16]
Т = 1,88Н1/3.
Эта зависимость соответствует деформации стали марки 45 при 11000С.
Функционал для рассматриваемого случая
(4.4)
где
Подходящей последовательностью функций вида (4.1) для поля скоростей, удовлетворяющей граничным условиям, будет
(4.5)
Ограничим
(4.5) двумя членами ряда. Второй компонент
скорости найдем из условия несжимаемости
при
Очевидно, что из выражения (4.5) следует
После
интегрирования данного выражения для
нахождения
и преобразований получили компоненты
тензора скорости деформации [16]
(4.6а)
(4.6б)
Деформированное состояние описывается приближенно формулами (4.6), которые содержат один варьируемый коэффициент а1, который определим из условия экстремума функционала (4.4)
В результате найдено а1=0,73v, подставив которое в (4.6) получим
Распределение интенсивности скоростей деформации в безразмерном виде Н1= Н/(2v/h) для одной четверти представлено на рис. 4.1 (подготовлено с применением пакета EXCEL).
H1
y/b
z/h
Шкала H1
Рис. 4.1. Распределение интенсивностей скорости деформации
по сечению заготовки при протяжке
