Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
18-32.docx
Скачиваний:
8
Добавлен:
01.03.2025
Размер:
117.26 Кб
Скачать

23. Масса и импульс фотона

Согласно гипотезе световых квантов Эйн­штейна, свет испускается, поглощается и распространяется дискретными порция­ми (квантами), названными фотонами. Энергия фотона 0=h. Его масса нахо­дится из закона взаимосвязи массы и энергии (m=E/c2):

m=h/c2. (205.1)

Фотон — элементарная частица, которая всегда (в любой среде!) движется со ско­ростью света с и имеет массу покоя, рав­ную нулю.

Импульс фотона p p=0/c=h/c. (205.2) Из приведенных рассуждений следует, что фотон, как и любая другая частица, характеризуется энергией, массой и им­пульсом.

Если фотоны обладают импульсом, то свет, падающий на тело, должен оказы­вать на него давление. С точки зрения квантовой теории, давление света на по­верхность обусловлено тем, что каждый фотон при соударении с поверхностью пе­редает ей свой импульс.

Давление света на поверхность равно импульсу, который передают поверхности в 1 с N фотонов:

р =(2h/c)N+(h/c)(1-)N=(1+)(h/c)N.

Nh=Ee есть энергия всех фотонов, падающих на единицу поверхности в еди­ницу времени, т. е. энергетическая осве­щенность поверхности, а Ee/c=wобъемная плотность энергии излучения. Поэтому давление, производи­мое светом при нормальном падении на поверхность,

р =(Ee/c)(1+)=w(1+).

24. Двойственная природа света.

Свет представляет собой сложное явление: в одних случаях он ведет себя как электромагнитная волна, в других - как поток особых частиц, фотонов, что проявляется более отчетливо для очень коротких электромагнитных волн рентгеновское излучение, (Гамма- лучи). Поэтому часто под оптикой понимают учение о физических явлениях, связанных с распространением коротких электромагнитных волн.

Волновое св-ва света проявляется: интерференции, дифракции, поляризации.

Корпускулярное св-во: явление внешнего фотоэффекта.

Световая волна - электромагнитная волна, где колеблются векторы Е и Н. Опыт показывает, что действие света на вещество определяется, главным образом, вектором Е, который поэтому называют световым вектором. То, что мы называем видимым светом, представляет узкий интервал электромагнитных волн: 0,4-0,75 мкм. Распространение световой волны описывается уравнением Е=Е0Cos(ωt-kr),

где w-частота колебаний, k=2π/λ- волновое число, r-расстояние, отсчитываемые вдоль направления распространения.

Отношение скорости световой волны в вакууме к скорости ее в среде называется абсолютный показателем преломления этой среды n : n=c/υ. С учетом формулы: υ=c/√(εμ) находим n=√(εμ). Т.к. для большинства прозрачных сред μ =1, то n=√ε формула связывает оптические свойства вещества с его электрическими свойствами. Значения n характеризуют оптическую плотность среды, которая тем больше, чем больше n.

25. Основы квантовой физики

26. Двойственная корпускулярно – волновая природа микрообъектов.

согласно де Бройлю, с каждым микрообъектом связываются, с одной сто­роны, корпускулярные характеристики — энергия Е и импульс р, а с другой — волновые характеристики — частота v и длина волны . Количественные соотно­шения, связывающие корпускулярные и волновые свойства частиц, такие же, как для фотонов:

E=hv, p=h/. (213.1)

любой частице, обладающей импульсом, сопо­ставляют волновой процесс с длиной вол­ны, определяемой по формуле де Бройля:

=h/p. (213.2)

Представление о двойственной корпускулярно-волновой природе частиц ве­щества углубляется еще тем, что на части­цы вещества переносится связь между полной энергией частицы e и частотой v волн де Бройля:

e=hv. (213.3)

Это свидетельствует о том, что соотноше­ние между энергией и частотой в формуле (213.3) имеет характер универсального соотношения, справедливого как для фо­тонов, так и для любых других микроча­стиц. Справедливость же соотношения (213.3) вытекает из согласия с опытом тех теоретических результатов, которые получены с его помощью в квантовой механике, атомной и ядерной физике.

Всем микро­объектам присущи и корпускулярные, и волновые свойства; в то же время любую из микрочастиц нельзя считать ни части­цей, ни волной в классическом понимании.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]