
- •Множества, области, кривые.
- •Комплексная плоскость.
- •Односвязные и многосвязные области.
- •Последовательности комплексных чисел.
- •Предел последовательности комплексных чисел.
- •6.Понятие функции комплексной переменной.
- •7.Предел и непрерывность функции комплексной переменной.
- •8.Основные элементарные функции комплексной переменной.
- •9.Определение производной. Дифференцирование функции комплексной переменной.
- •10.Дифференциал. Условия Коши-Римана.
- •Аналитическая функция.
- •Гармонические функции. Сопряженно-гармонические функции.
- •13.Геометрический смысл модуля производной. Коэффициент подобия.
- •14. Геометрический смысл аргумента производной.
- •Понятие о конформном отображении.
- •Конформное отображение 1-го рода. Конформное отображение 2-го рода.
- •Критерий конформности.
- •Принцип взаимно-однозначного соответствия границ.
- •Принцип симметрии Римана-Шварца. Примеры функций, задающих конформное отображение
- •Определение интеграла от функции комплексной переменной.
- •21.Связь интеграла комплексной переменной с криволинейным интегралом 2-го рода.
- •22.Свойства интеграла от фкп.
- •Оценка интеграла от функции комплексной переменной.
- •Основная теорема Коши. Теорема Коши для многосвязной области.
- •Первообразная и неопределенный интеграл. Формула Ньютона-Лейбница.
- •Интеграл Коши.
- •27.Теорема о среднем для аналитических функций.
- •Принцип максимума модуля аналитической функции.
- •Интеграл типа Коши
- •Теорема Коши-Лиувилля.
- •Теорема Морера.
- •Числовые ряды с комплексными членами. Частичная сумма ряда.
- •Необходимое и достаточное условия сходимости числового ряда.
- •Функциональные ряды. Точка сходимости. Область сходимости.
- •Равномерная сходимость функциональных рядов.
- •Степенные ряды. Круг и радиус сходимости степенного ряда.
- •Ряд Тейлора. Разложение в ряд Тейлора некоторых элементарных функций комплексной переменной.
- •Формулы Эйлера.
- •Голоморфные функции.
- •Нули аналитической функции.
- •Ряд Лорана. Область сходимости ряда Лорана.
- •Разложение аналитической функции в ряд Лорана.
- •Классификация изолированных особых точек аналитической функции.
- •Устранимая особая точка.
- •Полюс. Порядок полюса.
- •Существенно особая точка.
- •Теорема Сохотского.
- •Разложение аналитической функции в ряд Лорана в окрестности бесконечно удаленной точки.
- •Понятие вычета. Основная теорема о вычетах.
- •Вычисление вычетов для простого полюса.
- •Вычисление вычетов для полюса порядка n.
- •Логарифмический вычет
- •Вычет относительно бесконечно удаленной точки.
- •Теорема о сумме вычетов.
- •Вычисление интегралов по замкнутому контуру.
- •Вычисление с помощью вычетов определенных интегралов от рациональных функций действительной переменной
- •Вычисление с помощью вычетов определенных интегралов от тригонометрических функций.
- •58.Вычисление с помощью вычетов несобственных интегралов от функций
- •Лемма Жордана.
- •Суммирование некоторых рядов с помощью вычетов Формула суммирования знакопеременного ряда с рациональными слагаемыми.
Суммирование некоторых рядов с помощью вычетов Формула суммирования знакопеременного ряда с рациональными слагаемыми.
Т
еорема
(о суммировании ряда с рациональными
слагаемыми): пусть
R(z)=Pn(z)/Qm(z)
– рац. Ф-ция с полюсами a1,…,ap,отличными
от целых чисел, пусть nm-2.
Тогда
Док-во: In=|z|=n+1/2 R(z)ctgz dz.
Выберем n достаточно большим так, чтобы a1,…,ap попали внутрь окрестности.
In=2i res R(z) ctgz
Особенности R(z)ctg z: 1) a1,…,ap ; 2) sin z=0, т.е. z=k, kZ.
Покажем, что In0 при n. |R(z)|C/|z|2. ctg z: рассмотрим С, из которой выброшены все целые точки с некоторой окр-тью.
В полученной обл. M: const|ctg z|<M.
pi=1resaiR(z) ctgz+1/+k=-R(k)=0.
1 Доказательство аналогично доказательству этой теоремы для функций действительной переменной