
- •1.Устройство и принцип действия машин постоянного тока.
- •2. Обмотки машин постоянного тока.
- •2. Обмотки машин постоянного тока.
- •3. Эдс и электромагнитный момент мпт.
- •3. Эдс и электромагнитный момент мпт.
- •3. Эдс и электромагнитный момент мпт.
- •4. Реакция якоря, её влияние на работу мпт.
- •4. Реакция якоря, её влияние на работу мпт.
- •5. Коммутация в мпт.
- •5. Коммутация в мпт.
- •5. Коммутация в мпт.
- •6. Генераторы постоянного тока.
- •7 . Условия самовозбуждения.
- •9. Двигатели постоянного тока.
- •Достоинства и недостатки дпт
- •10. Характеристики дпт. Механическая характеристика дпт
- •Регулировочная характеристика дпт
- •11. Способы пуска дпт.
- •11. Способы пуска дпт.
- •13. Способы торможения дпт.
5. Коммутация в мпт.
Прямолинейная коммутация. Этот вид коммутации имеет место в машине, если в процессе коммутации в коммутирующей секции ЭДС не наводится или, что более реально, сумма ЭДС в коммутирующей секции равна нулю. В этом случае для коммутирующей секции, замкнутой щеткой (рис. 27.1, б), в соответствии со вторым законом Кирхгофа можно записать
i1r1 – i2r2 = 0 (27.1)
r1 и r2 — переходные сопротивления между щеткой и сбегающей 1 и набегающей 2 пласти –
нами; i1 и i2 — токи, переходящие в обмотку якоря через пластины 1 и 2:
i1 = ia + i ; i2 = ia – i (27.2)
здесь i – ток в коммутирующей секции.
Используя (27.2), получим
(ia + i)r1 – (ia – i)r2 = 0
откуда ток в коммутирующей секции
i = ia(r2 – r1)/ (r2 + r1) (27.3)
Закон изменения тока коммутирующей секции в функции времени определяется уравнением
i = iа(1 – 2t /Тк). (27.4)
Это уравнение является линейным, а поэтому график i = f (t) представляет собой прямую линию, пересекающую ось абсцисс в точке t = 0,5 Tk (рис. 27,2). Коммутация, при которой ток в коммутирующей секции i изменяется по прямолинейному закону, называют прямолинейной (идеальной) коммутацией.
Весьма важным фактором, определяющим качество коммутации, является плотность тока в переходном контакте «щетка-пластина»: ji — плотность тока под сбегающим краем щетки; j2 — плотность тока под набегающим краем щетки.
Плотность тока под щеткой прямо пропорциональна тангенсу угла между осью абсцисс и графиком коммутации, т.е. j1 ≡ tg α1, и j2 ≡ tg α2. График прямолинейной (идеальной) коммутации имеет вид прямой линии. При этом α1 = α2, а следовательно, плотность тока в переходном контакте «щетка — коллектор» в течение всего периода коммутации остается неизменной (j1 = j2 = const). Физически это объясняется тем, что при прямолинейной коммутации убывание тока, проходящего через сбегающую пластину коллектора, пропорционально уменьшению площади контакта щетки с этой пластиной, а нарастание тока через набегающую пластину пропорционально увеличению площади контакта щетки с этой пластиной.
Из построений, сделанных на рис. 27.2, следует, что к моменту времени, когда щетка теряет контакт со сбегающей пластиной, ток через эту пластину уменьшается до нуля. Таким образом, при прямолинейной коммутации пластина коллектора выходит из-под щетки без разрыва тока.
Изложенные свойства прямолинейной (идеальной) коммутации — постоянство плотности тока под щеткой и выход пластины из-под щетки без разрыва тока — являются основными, и благодаря им этот вид коммуташш не сопровождается искрением на коллекторе.
Криволинейная замедленная коммутация. Период коммутации в современных машинах постоянного тока весьма мал и составляет приблизительно 10-3 - 10-5 с. При этом средняя скорость изменения тока в коммутирующей секции (di/ dt)ср = 2iа/ Тк очень велика, что приводит к появлению в коммутирующей секции ЭДС самоиндукции
eL = - Lc (di /dt), (27.5)
где Lс — индуктивность секции; i — ток в коммутирующей секции.
Обычно в каждом пазу якоря находится несколько пазовых сторон (не менее двух), принадлежащих разным секциям. При этом если шаг обмотки полный (у1 = τ), то все эти секции одновременно находятся в состоянии коммутации, будучи замкнутыми разными щетками (рис. 27.3, а). Обычно ширина щетки больше коллекторного деления и каждая щетка замыкает одновременно несколько секций. Так как пазовые части коммутирующих секций лежат в одних пазах, то изменяющийся магнитный поток каждой из этих частей наводит в пазовых частях других секций ЭДС взаимоиндукции