Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ALGEM.docx
Скачиваний:
2
Добавлен:
01.03.2025
Размер:
812.75 Кб
Скачать

Вопрос№19 Эксцентрисистет гиперболы

 Определение : Эксцентриситетом гиперболы называется отношение с ⁄ а, где с — половина расстояния между фокусами, а — действительная полуось гиперболы.  Эксцентриситет гиперболы (как и эллипса) обозначим буквой ε. Так как с > а: то ε > 1, т. е. эксцентриситет гиперболы больше единицы. Очевидно,

 Из последнего равенства легко получается геометрическое истолкование эксцентриситета гиперболы. Чем меньше эксцентриситет, т. е. чем ближе он к единице, тем меньше отношение b ⁄ a, а это означает, что основной прямоугольник более вытянут в направлении действительной оси. Таким образом, эксцентриситет гиперболы характеризует форму ее основного прямоугольника, а, значит, и форму самой гиперболы.  В случае равносторонней гиперболы ( a = b) имеем

ε = √2

 Определение. Две прямые, перпендикулярные действительной оси гиперболы и расположенные симметрично относительно центра на расстоянии а ⁄ ε от него, называются директрисами гиперболы (здесь а — действительная полуось, ε — эксцентриситет гиперболы).   Аналогично случаю эллипса доказывается теорема: если г — расстояние от произвольной точки М гиперболы до какого-нибудь фокуса, d — расстояние от той же точки до соответствующей этому фокусу директрисы, то отношение r ⁄ d есть величина постоянная, равная эксцентриситету гиперболы.  Установленное свойство эллипса и гиперболы можно положить в основу общего определения этих линий: множество точек, для которых отношение расстояний до фокуса и до соответствующей директрисы является величиной постоянной, равной ε , есть эллипс, если ε < 1, и гипербола, если ε > 1.

Эксцентриситет эллипса

 Определение. называется отношение c ⁄ a, где с — половина расстояния между фокусами, а — большая полуось эллипса.  Эксцентриситет обозначают буквой ε: ε = c⁄ a. Так как ε = с ⁄ a, то 0 ≤ ε ≤ 1. Принимая во внимание, что ε2 = с2 ⁄ a2 = ( a2 – b2) ⁄ a2 = 1 – (a ⁄ b)2, получим

 Из последнего равенства легко получается геометрическое истолкование эксцентриситета эллипса. При очень малом ε числа а и b почти равны, т.е. эллипс близок к окружности. Если же ε близко к единице, то число b весьма мало по сравнению с числом а и эллипс сильно вытянут вдоль большой оси. Таким образом, эксцентриситет эллипса характеризует меру вытянутости эллипса. Соотношения для фокальных радиусов для эллипса примут вид

r1 = a + ε·xr2 = a - ε·x

Эксцентриситет параболы

При рассмотрении директориальных свойств эллипса и гиперболы мы по существу выяснили геометрический смысл эксцентриситетов этих кривых: эксцентриситет эллипса и гиперболы есть постоянное число, равное отношению расстояния от каждой их точки до фокуса. Из определения параболы следует, что её точки обладают аналогичным свойством, то есть MF/p(M,d)=const=1

 , то есть эксцентриситетом параболы является число 1.

Вопрос №20

Полярное уравнение, общее по форме для эллипса, одной ветви гиперболы и параболы, имеет вид

, (1)

где   - полярные координаты произвольной точки линии, р - фокальный параметр (половина фокальной хорды линии, перпендикулярной к ее оси),   - эксцентриситет (в случае параболы  ). Полярная система координат при этом выбрана так, что полюс находится в фокусе, а полярная ось направлена по оси линии в сторону, противоположную ближайшей к этому фокусу директрисы.

Вопрос №21

 Коническая и цилиндрическая поверхности

К коническим относятся поверхности, образованные перемещением прямолинейной образующей l по криволинейной направляющей т. Особенностью образования конической поверхности является то, что

Рис. 95

Рис. 96

при этом одна точка образующей всегда неподвижна. Эта точка является вершиной конической поверхности (рис. 95, а). Определитель конической поверхности включает вершину S и направляющую т, при этом l'~S; l'^ т.

К цилиндрическим относятся поверхности, образованные прямой образующей /, перемещающейся по криволинейной направляющей т параллельно заданному направлению S (рис. 95, б). Цилиндрическую поверхность можно рассматривать как частный случай конической поверхности с бесконечно удаленной вершиной S.

Определитель цилиндрической поверхности состоит из направляющей т и направления S, образующих l, при этом l' || S; l' ^ т.

Если образующие цилиндрической поверхности перпендикулярны плоскости проекций, то такую поверхность называют проецирующей. На рис. 95, в показана горизонтально проецирующая цилиндрическая поверхность.

На цилиндрической и конической поверхностях заданные точки строят с помощью образующих, проходящих через них. Линии на поверхностях, например линия а на рис. 95, в или горизонтали h на рис. 95, а, б, строятся с помощью отдельных точек, принадлежащих этим линиям.

Поверхности вращения

К поверхностям вращения относятся поверхности, образующиеся вращением линии l вокруг прямой i, представляющей собой ось вращения. Они могут быть линейчатыми, например конус или цилиндр вращения, и нелинейчатыми или криволинейными, например сфера. Определитель поверхности вращения включает образующую l и ось i.

Каждая точка образующей при вращении описывает окружность, плоскость которой перпендикулярна оси вращения. Такие окружности поверхности вращения называются параллелями. Наибольшую из параллелей называют экватором. Экватор .определяет горизонтальный очерк поверхности, если i _|_ П1. В этом случае параллелями являются горизонтали h этой поверхности.

Кривые поверхности вращения, образующиеся в результате пересечения поверхности плоскостями, проходящими через ось вращения, называются меридианами. Все меридианы одной поверхности конгруэнтны. Фронтальный меридиан называют главным меридианом; он определяет фронтальный очерк поверхности вращения. Профильный меридиан определяет профильный очерк поверхности вращения.

Строить точку на криволинейных поверхностях вращения удобнее всего с помощью параллелей поверхности. На рис. 103 точка М построена на параллели h4.

Поверхности вращения нашли самое широкое применение в технике. Они ограничивают поверхности большинства машиностроительных деталей.

Коническая поверхность вращения образуется вращением прямой i вокруг пересекающейся с ней прямой — оси i (рис. 104, а). Точка М на поверхности построена с помощью образующей l и параллели h. Эту поверхность называют еще конусом вращения или прямым круговым конусом.

Цилиндрическая поверхность вращения образуется вращением прямой l вокруг параллельной ей оси i (рис. 104, б). Эту поверхность называют еще цилиндром или прямым круговым цилиндром.

Сфера, образуется вращением окружности вокруг ее диаметра (рис. 104, в). Точка A на поверхности сферы принадлежит главному

Рис. 103

Рис. 104

меридиану f, точка В — экватору h, а точка М построена на вспомогательной параллели h'.

Тор образуется вращением окружности или ее дуги вокруг оси, лежащей в плоскости окружности. Если ось расположена в пределах образующейся окружности, то такой тор называется закрытым (рис. 105, а). Если ось вращения находится вне окружности, то такой тор называется открытым (рис. 105, б). Открытый тор называется еще кольцом.

Поверхности вращения могут быть образованы и другими кривыми второго порядка. Эллипсоид вращения (рис. 106, а) образуется вращением эллипса вокруг одной из его осей; параболоид вращения (рис. 106, б) — вращением параболы вокруг ее оси; гиперболоид вращения однополостный (рис. 106, в) образуется вращением гиперболы вокруг мнимой оси, а двуполостный (рис. 106, г) — вращением гиперболы вокруг действительной оси.

В общем случае поверхности изображаются не ограниченными в направлении распространения образующих линий (см. рис. 97, 98). Для решения конкретных задач и получения геометрических фигур ограничиваются плоскостями обреза. Например, чтобы получить круговой цилиндр, необходимо ограничить участок цилиндрической поверхности плоскостями обреза (см. рис. 104, б). В результате получим его верхнее и нижнее основания. Если плоскости обреза перпендикулярны оси вращения, цилиндр будет прямым, если нет — цилиндр будет наклонным.

Рис. 105

Рис. 106

Чтобы получить круговой конус (см. рис. 104, а), необходимо выполнить обрез по вершине и за пределами ее. Если плоскость обреза основания цилиндра будет перпендикулярна оси вращения — конус будет прямой, если нет — наклонный. Если обе плоскости обреза не проходят через вершину — конус получим усеченным.

С помощью плоскости обреза можно получить призму и пирамиду. Например, шестигранная пирамида будет прямой, если все ее ребра имеют одинаковый наклон к плоскости обреза. В других случаях она будет наклонной. Если она выполнена с помощью плоскостей обреза и ни одна из них не проходит через вершину — пирамида усеченная.

Призму (см. рис. 101) можно получить, ограничив участок призматической поверхности двумя плоскостями обреза. Если плоскость обреза перпендикулярна ребрам, например восьмигранной призмы, она прямая, если не перпендикулярна — наклонная.

Выбирая соответствующее положение плоскостей обреза, можно получать различные формы геометрических фигур в зависимости от условий решаемой задачи.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]