
- •Вопрос 1
- •Вопрос 2
- •3. Геометрическая интерпретация мнк
- •4.Теорема Гаусса-Маркова
- •5. Использование t-статистики для проверки статистических гипотез о параметрах регрессии.
- •6. Использование коэффициента детерминации r2 и f–критерия для проверки статистических гипотез о параметрах регрессии.
- •7. Тестирование гипотез общего линейного вида о параметрах регрессии.
- •8. Мультиколлинеарность
- •9. Искусственные (фиктивные) переменные.
- •10. Гетеро- и гомоскедастичность. Модели с безусловной и условной гетероскедастичностью.
- •13.Автокорреляция (последовательная корреляция) определяется
- •16) Система линейных одновременных уравнений (лоу) и ее идентификация.
- •17.Метод инструментальных переменных оценки параметров систем одновременных уравнений.
- •18.Двухшаговый метод оценки параметров систем одновременных уравнений.
- •19.Модели векторной авторегрессии
- •20.Моделирование и прогнозирование волатильности финансовых рынков.
- •23. Модели систем массового обслуживания
- •24. Весь процесс эконометрического моделирования можно разбить на шесть основных этапов:
- •Типы исходных данных для построения эконометрических моделей
- •Экономическая интерпретация коэффициентов регрессионного уравнения в линейной спецификации и в модели «в логарифмах»?
- •27) Какие гипотезы проверяются с помощью критерия Стьюдента?
- •28) Какие гипотезы проверяются с помощью критерия Дарбина-Уотсона?
- •37. Как оценивается дисперсия истинной ошибки модели.
- •38. Каковы последствия мультиколлинеарности факторов.
- •43. Основные подходы к оценке коэффициентов эконометрической модели, содержащей лаговые зависимые переменные
- •44. Оценка точности прогноза
- •45.Что представляет собой “доверительный интервал прогноза”?
- •46.Охарактеризуйте особенности прогнозирования на основе моделей авторегрессионных временных рядов.
- •50. Тесты ранга коинтеграции.
8. Мультиколлинеарность
Еще одной серьезной проблемой при построении моделей множественной линейной регрессии по МНК является мультиколлинеарность - линейная взаимосвязь двух или нескольких объясняющих переменных. Причем, если объясняющие переменные связаны строгой функциональной зависимостью, то говорят о совершенной мультиколлинеарности. На практике можно столкнуться с очень высокой (или близкой к ней) мультиколлинеарностью - сильной корреляционной зависимостью между объясняющими переменными. Причины мультиколлинеарности и способы ее устранения анализируются ниже.
10.1. Суть мультиколлинеарности
Мультиколлинеарность может быть проблемой лишь в случае множественной регрессии. Ее суть можно представить на примере совершенной мультиколлинеарности.
Пусть уравнение регрессии имеет вид
Y=β0 + β1X1 + β 2X2 + ε (10.1)
Пусть также между объясняющими переменными существует строгая линейная зависимость:
X2 = Yo + Y1X1. (10.2)
Подставив (10.2) в (10.1). получим:
Y = β0+ β1X1 + β2(Yo + Y1Xi) + e
или Y = (β0 + β2Yo) + (β1+ β2Y1)X1 + e.
Обозначив β0 + β2Y0 = a, β1 + β2Y1 = b. получаем уравнение парной линейной регрессии:
Y = a + b*X1 + ε. (10.3)
По МНК нетрудно определить коэффициенты а и Ь. Тогда получим систему двух уравнений:ув0 + в2у0 =а, (10,4) |в1 +в2у1 = Ь.
В систему (10.4) входят три неизвестные β0, β1, β2 (коэффициенты Yo н Y1 определены в (10.2)). Такая система в подавляющем числе случаев имеет бесконечно много решений. Таким образом, совершенная мультиколлинеарность не позволяет однозначно определить коэффициенты регрессии уравнения (10.1) и разделить вклады объясняющих переменных X, и Х: в их влиянии на зависимую переменную Y. В этом случае невозможно сделать обоснованные статистические выводы об этих коэффициентах. Следовательно, в случае мультиколлинеарности выводы по коэффициентам и по самому уравнению регрессии будут ненадежными.
Совершенная мультиколлинеарность является скорее теоретическим примером. Реальна же ситуация, когда между объясняющими переменными существует довольно сильная корреляционная зависимость, а не строгая функциональная. Такая зависимость называется несовершенной мулътиколлинеарностью. Она характеризуется высоким коэффициентом корреляции р между соответствующими объясняющими переменными. Причем, если значение р по абсолютной величине близко к единице, то говорят о почти совершенной мультиколлинеарности. В любом случае мультиколлинеарность затрудняет разделение влияния объясняющих факторов на поведение зависимой переменной и делает оценки коэффициентов регрессии ненадежными.