
- •38. Цепь синусоидального тока с емкостью. Закон Ома для действующих и амплитудных значений тока и напряжения. Ёмкостное сопротивление, его зависимость от частоты.
- •39. Цепь синусоидального тока с емкостью. Энергетический процесс. Мгновенная, активная и реактивная мощности.
- •40. Последовательное соединение резистора и конденсатора (конденсатор с потерями). Временная и векторная диаграммы. Закон Ома для действующих и амплитудных значений тока и напряжения.
- •41. Треугольники напряжений и сопротивлений. Полное сопротивление. Угол сдвига фаз между напряжением и током. Закон Ома для действующих и амплитудных значений тока и напряжения.
- •42. Энергетический процесс. Мгновенная, активная, реактивная и полная мощности. Треугольник мощностей. Коэффициент мощности.
- •44. Компенсация реактивной мощности в электрических сетях с помощью конденсаторов.
- •46. Проводимости ветвей и полная проводимость. Треугольники токов и проводимостей. Связь между действующими (и амплитудными) значениями тока и напряжения. Энергетический процесс.
- •47. Сущность символического метода. Три формы записи комплексного числа.
- •48. Выражение тока, напряжения, сопротивления, проводимости, эдс электромагнитной индукции, мощности комплексными числами. Законы Ома и Кирхгофа в символическом виде.
- •49. Комплексная передаточная функция. Частотные характеристики. Ачх, фчх. Годограф. Частотные характеристики простейших двухполюсников.
- •52. Последовательный колебательный контур. Коэффициент мощности. Коэффициент передачи по напряжению. Добротность. Амплитудно-частотные и фазочастотные характеристики.
- •53. Последовательный колебательный контур. Расстройка. Полоса пропускания и избирательность. Практическое использование последовательных колебательных контуров.
- •54 .Параллельный колебательный контур. Токи в ветвях и в неразветвлённой части цепи. Резонанс токов, условие его возникновения. Признаки резонанса. Резонансная частота. Векторная диаграмма.
- •63. Понятие о несинусоидальных (негармонических) токах и напряжениях. Возникновение несинусоидальных токов. Понятие о нелинейных элементах. Сложение синусоид, имеющих разные частоты.
- •69. Катушки с магнитными сердечниками. Искажающее действие гистерезиса и магнитного насыщения на форму кривой тока. Потоки рассеяния. Влияние воздушного зазора на работу катушки.
- •70. Устройство и принцип работы трансформатора. Коэффициент трансформации. Преобразование напряжений, токов, сопротивлений.
- •71. Схема замещения трансформатора. Согласующие свойства трансформатора. Использование трансформатора в технике связи.
- •72. Понятие о переходных процессах. Причины возникновения переходных процессов. Законы коммутации. Независимые начальные условия.
71. Схема замещения трансформатора. Согласующие свойства трансформатора. Использование трансформатора в технике связи.
Схема замещения трансформатора
Схема замещения трансформатора представляет собой сочетание двух схем замещения — первичной и вторичной обмоток, которые соединены между собой в точках а и б. В цепи первичной обмотки включены сопротивления R1 и Х1 , а в цепи вторичной обмотки — сопротивления R'2 в Х'2.Участок схемы замещения между точками а и б, по которому проходит ток I0, называют намагничивающим контуром. На вход схемы замещения подают напряжение Ú1, к выходу ее подключают переменное сопротивление нагрузки Z'н, к которому приложено напряжение — Ú'2. Сопротивления Z'н (и его составляющие R'2 = R2k2 и Х'2 = Х2k2), а также Z'н, называют соответственно сопротивлениями вторичной обмотки и нагрузки, приведенными к первичной обмотке. Аналогично приведенными называют значения ЭДС и тока: Е'2 = kE2 = E1; I'2= I2/k. Полная мощность приведенного контура вторичной обмотки в схеме замещения равна мощности вторичной обмотки реального трансформатора: I'2Е'2 = (I2/k)E2k = I2E2, а мощность электрических потерь в приведенном вторичном контуре этой схемы равна мощности потерь во вторичной обмотке реального трансформатора: I'22R'2 = (I2/k)2R2k2 = I22R2. Относительные падения напряжений в активном и индуктивном сопротивлениях приведенного вторичного контура также остаются неизменными, как и в реальном трансформаторе:
I'2R'2/E'2 = (I2/k)k2R2/(kE2) = I2R2/E2;
I'2X'2/E'2=(I2/k)k2X2/(kE2) = I2X2/E2.
Согласующие свойства трансформатора
Использование трансформатора в технике связи
72. Понятие о переходных процессах. Причины возникновения переходных процессов. Законы коммутации. Независимые начальные условия.
Понятие о переходных процесса
Процесс, возникающий в электрических цепях при различных воздействиях, приводящих к изменению их режима работы, то есть при действии различного рода коммутационной аппаратуры, например, ключей, переключателей для включения или отключения источника или приёмника энергии, при обрывах в цепи, при коротких замыканиях отдельных участков цепи и т. д.
Причины возникновения переходных процессов
Физическая причина возникновения переходных процессов в цепях — наличие в них катушек индуктивности и конденсаторов, т.е. индуктивных и емкостных элементов в соответствующих схемах замещения. Объясняется это тем, что энергия магнитного и электрического полей этих элементов не может изменяться скачком при коммутации в цепи.
Законы коммутации
На практике, за исключением особых случаев (некорректные коммутации), допустимо использование указанных законов в другой формулировке, а именно:
первый закон коммутации – в ветви с катушкой индуктивности ток в момент
коммутации
сохраняет свое докоммутационное значение
и в дальнейшем начинает изменяться с
него:
.
второй закон коммутации – напряжение на конденсаторе в момент
коммутации
сохраняет свое докоммутационное значение
и в дальнейшем начинает изменяться с
него:
.
Независимые начальные условия
Это электрические параметры, которые не изменяются скачком в момент коммутации, то есть, остаются неизменными в начале переходного процесса в электрической цепи.
Согласно законам коммутации, скачком не могут изменяться напряжения на ёмкостях и токи в индуктивностях. Поэтому значения этих величин в начале коммутации называются независимыми начальными условиями. Они не зависят от условий коммутации.
Все остальные величины — напряжения и токи на активных сопротивлениях, токи через ёмкости, напряжения на индуктивностях — в момент коммутации могут изменяться скачком (а могут и не изменяться). Значения этих величин в начале переходного процесса называются зависимыми начальными условиями.
Определение начальных независимых условий необходимо осуществить до начала расчёта переходного процесса, например, с помощью законов Ома и Кирхгофа, с помощью метода контурных токов и др.
73. Переходные процессы в RL-цепи первого порядка. Включение RL-цепи на постоянное напряжение. Короткое замыкание RL-цепи. Законы изменения тока и напряжения. Постоянная времени RL-цепи. Длительность процесса. Энергетический процесс.
Переходные процессы в RL-цепи первого порядка
Включение RL-цепи на постоянное напряжение.
Короткое замыкание RL-цепи
Законы изменения тока и напряжения
Постоянная времени RL-цепи
Длительность процесса
Энергетический процесс
74. Переходные процессы в RС-цепях первого порядка. Включение RС-цепи на постоянное напряжение. Короткое замыкание RС-цепи. Законы изменения тока и напряжения. Постоянная времени RC-цепи. Реакция при нулевом входе и нулевом начальном состоянии. Длительность процесса. Энергетический процесс.
Переходные процессы в RС-цепях первого порядка
Включение RС-цепи на постоянное напряжение
Короткое замыкание RС-цепи
Законы изменения тока и напряжения
Постоянная времени RC-цепи
Реакция при нулевом входе и нулевом начальном состоянии
Длительность процесса
Энергетический процесс