Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Нуклеиновые кислоты. Генетический код.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
615.42 Кб
Скачать

НУКЛЕОТИДЫ, НУКЛЕОЗИДЫ, НУКЛЕИНОВЫЕ КИСЛОТЫ

При полном гидролизе нуклеиновых кислот (НК) выделены соединения: а) пуриновые и пиримидиновые основания; б) моносахариды РИБОЗА или ДЕЗОКСИРИБОЗА (С5Н10О5); в) фосфорная кислота.

Строение моносахаридов:

Строение пуриновых оснований:

Строение пиримидиновых оснований:

Нуклеиновые кислоты имеют различающийся состав. В частности, дезоксирибонуклеиновые кислоты (ДНК) содержат дезоксирибозу, а рибонуклеиновые кислоты (РНК)- рибозу. Эти и другие отличия в составе нуклеиновых кислот приведены в таблице:

Одинаковые компоненты

Отличающиеся компоненты

ДНК

РНК

АДЕНИН

ГУАНИН

ЦИТОЗИН

ДЕЗОКСИРИБОЗА

ТИМИН

РИБОЗА

УРАЦИЛ

НУКЛЕОЗИДЫ- соединения азотистого основания и углеводов (рибозы и дезоксирибозы). Нуклеозиды образуются за счет N-гликозидной связи между ДЕВЯТЫМ атомом азота у ПУРИНОВЫХ (первым атомом азота- у ПИРИМИДИНОВЫХ) оснований и гидроксилом ПЕРВОГО атома углерода рибозы или дезоксирибозы. Во избежание путаницы, нумерация атомов азотистых оснований осуществляется арабскими цифрами, а у атомов углерода рибоз- арабскими цифрами со “штрихом”.

пуриновые

пиримидиновые

НУКЛЕОТИДЫ отличаются от нуклеозидов наличием остатков фосфорной кислоты (от одного до трех), связанных простой эфирной связью с гидроксилом 5’ атома углерода рибоз. Остатки фосфорных кислот между собой также связаны простой эфирной связью. В зависимости от числа остатков фосфорной кислоты в нуклеотидах различают МОНО-, ДИ- и ТРИФОСФОНУКЛЕОТИДЫ. Их номенклатура приведена в таблице:

азотистые

основания

нуклеозиды

Нуклеотиды

полное название

Сокращенное

аденин

аденозин

Аденозинмонофосфат

АМФ

гуанин

гуанозин

Гуанозинмонофосфат

ГМФ

цитозин

цитидин

Цитидинмонофосфат

ЦМФ

урацил

уридин

Уридинмонофосфат

УМФ

тимин

тимидин

тимидинмонофосфат

ТМФ

Собственно НУКЛЕИНОВЫЕ кислоты представляют собой полинуклеотидмонофосфаты. Полимерная цепь образуется за счет фосфодиэфирной связи между 3’- гидроксилом одного нуклеотида и 5’- гидроксилом другого. Таким образом, первичная структура нуклеиновых кислот представляет собой ПОРЯДОК чередования нуклеотидов в полинуклеотидной цепи. Один из концов этой цепи (изображаемый слева) имеет свободный гидроксил при 5’- атоме С, а другой (изображаемый справа)- свободный гидроксил при 3’- атоме углерода рибоз. Поскольку основой нуклеиновых кислот является САХАРОФОСФАТНЫЙ ОСТОВ, в сокращенных написаниях участков цепи используют лишь ОДНОБУКВЕННЫЕ СИМВОЛЫ соответствующего азотистого основания. Полное и схематичное обозначение участка полинуклеотидной цепи приведены ниже:

5’-НО-G-A-A-T-C-T-A-C-A-…3'

Вследствие наличия сильнодиссоциирующих фосфатных групп, нуклеиновые кислоты (НК) легко образуют связи с оснОвными белками (высокое значение pI) с образованием НУКЛЕОПРОТЕИНОВ. Протеины отделяются от НК детергентами или после расщепления белков протеиназами НК осаждаются спиртом.

Подобно белкам, ДНК имеют первичную, вторичную и третичную структуру.

ПЕРВИЧНАЯ СТРУКТУРА есть последовательность чередования нуклеотидов в цепи ДНК и РНК. Сложность расшифровки структуры связана с наличием всего 4-х видов нуклеотидов при их огромном числе в молекуле.

ПРАВИЛА ЧАРГАФФА

1) сумма ПУРИНОВЫХ оснований в молекуле ДНК всегда равна сумме ПИРИМИДИНОВЫХ оснований.

2) А=Т, А/Т= 1; 3) Г=Ц, Г/Ц=1; 4) А+Т=Г+Ц; 5) если А+Т>Г+Ц, то АТ-тип.

Вторичная структура нуклеиновых кислот

Расшифрована впервые в 1953 г. Уотсоном и Крик (Watson, Crick).

Вторичная структура ДНК представляет собой свернутые в спираль ДВЕ комплементарно взаимодействующие и антипараллельные полинуклеотидные цепи. Образование вторичной структуры НК возможно вследствие проявления эффектов КОМПЛЕМЕНТАРНОСТИ и СТЭКИНГ-ВЗАИМОДЕЙСТВИЙ. Очень часто наблюдаются двунитевые спирализованные молекулы ДНК, замкнутые в кольцо с ковалентно связанными концами. Они не имеют разрывов у каждой в отдельности полинуклеотидной цепи. Подобные кольцевые ДНК, как правило, СУПЕРСПИРАЛИЗОВАНЫ, то есть кольцо дополнительно закручено в спираль. Суперспирализация- ПРАВИЛО, а не ИСКЛЮЧЕНИЕ, при условии отсутствия разрывов в фосфодиэфирных связях полинуклеотидной цепи.

КОМПЛЕМЕНТАРНОСТЬ - последовательность нуклеотидов в одной цепи автоматически определяет строго соответствующую ей последовательность нуклеотидов в КОМПЛЕМЕНТАРНОЙ ей цепи. Так, азотистое основание Аденин (А) всегда взаимодействует только с комплементарным ему азотистым основанием Тимин (Т) в молекулах ДНК. Одновременно азотистые основания Гуанин (Г) одной цепи взаимодействует только с комплементарними им азотистыми основаниями Цитозин (Ц) другой цепи (как в ДНК, так и в РНК). Комплементарность оснований обеспечивается системой водородных связей. В молекулах РНК, имеющих, в основном, однонитевую структуру, на отдельных участках, азотистые основания А взаимодействуют с комплементарными им азотистыми основаниями Урацил (У). Аналогично происходит взаимодействие в процессах транскрипции, когда на матрице ДНК синтезируется молекула РНК (матричная, транспортная и т.д.), и наоборот, когда при участии РЕВЕРС-ТРАНСКРИПТАЗЫ происходит синтез кДНК на матрице РНК.

СТЭКИНГ-ВЗАИМОДЕЙСТВИЯ- особого рода (Ван-дер-Ваальсовы) взаимодействия между выложенными в стопку (как монеты) друг над другом азотистых оснований.

Имеются А, В, С и Z-формы двунитевых участков ДНК, отличающиеся наклонами плоскостей азотистых оснований друг относительно друга ( у А- 20о, В- 0о, С- 5о, Z- особая ломанная форма).

SBS (side-by-side)- форма (бок о бок). Две цепи расположены прямо и незакручены.

Третичная структура днк

ДНК имеют формы ЛИНЕЙНАЯ, КОЛЬЦЕВАЯ, 2-х и 1-ЦЕПОЧЕЧНАЯ.

Двуцепочечные ДНК с "липкими" концами могут образовывать кольцо, которое далее ковалентно сшивается по сахарофосфатной цепи при помощи ДНК-лигазы.

Третичная структура ДНК у эукариотических клеток отличается тем, что многократная спирализация ДНК сопровождается образованием комплексов с белками.

46 хромосом (хроматид) человека организованы в 23 пары. Средняя длина хромосомы составляет 130 млн. пар оснований и имеет длину 5 см. Хромосома №1- 263 млн. п.о., хромосома № 46 –меньше 50 млн. п.о. Если проложить все ДНК в В-конформации в линию, то их общая длина превысит 2 метра. Человеческая хромосома 16 имеет 2,5 мкм в длину, а длина самой ДНК- 3,7 см. Понятно, что уместить такой длины ДНК в ядре возможно только путем ее определенной упаковки. При образовании третичной структуры ДНК человека происходит в среднем уменьшение ее размеров в 100 тысяч раз.

При образовании третичной структуры нуклеиновых кислот возможно образование ТРЕХ- и ЧЕТЫРЕХНИТЕВЫХ участков. Образование ТРЕХНИТЕВЫХ участков благодаря так называемым Хугстэновским взаимодействиям (Hoogsteen base pairs), когда одновременно взаимодействуют три основания: А-А-Т, Т-А-Т, Г-Г-Ц, Ц-Г-Ц.

Аналогичным образом происходит образование ТЕТРАМЕРНЫХ участков ДНК. Точный биологический смысл появления трех- и четырехнитевых участков ДНК пока не выяснен. Имеются только лишь предположения о том, что такие участки возникают в местах, наиболее ответственных за процессы репликации и транскрипции.

Материал хромосом- ХРОМАТИН- содержит кроме самой ДНК также гистоны, негистоновые белки, небольшое количество РНК. Нуклеосомный кор содержит октамер гистонов (2 х (Н2а+Н2b+H3+H4)).

ГИСТОН- простой белок (примерно 50% хроматина). Нуклеосомный кор образуется при оборачивании октамера гистонов двунитевой спирализованной ДНК на 1,5 оборота, отдельно включается дополнительный белок- гистон Н1. Все вместе называется ХРОМАТОСОМом .

Н1- очень богат ЛИЗ, Н2а, Н2b- умеренное количество ЛИЗ, Н3- есть ЦИС, умеренно- АРГ, Н4- богат АРГ и ГЛИ.

Хроматосомы образуются на двунитевой спирали ДНК на дистанциях (называемых ЛИНКЕРами) от 20 до 90 пар нуклеотидов и напоминают нанизанные на нитку бусины. Следующий этап- сворачивание в спираль очень длинной последовательности “бус”. Эта спираль, в свою очередь, претерпевает сворачивание в двужильные канаты, из которых образуются гроздья, являющиеся небольшой частью хромосомы: