Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛК.13 - Ризик у відносному в...doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
794.11 Кб
Скачать

13.1.3 Правила визначення знака інгредієнта

При побудові відносних оцінок ризику застосовуються такі правила (особливості) визначення інгредієнта оцінки.

Якщо розглядається оцінка виду [–]/[+] (символічний запис [-]/[+] означає, що розглядається відносна оцінка, чисельник якої має позитивний, а знаменник — негативний інгредієнт), то, враховуючи правила зміни інгредієнта, (1/[+] = [–]; 1/[–] = [+], тобто при діленні на певну характеристику її інгредієнт змінюється на протилежний), слід пам’ятати, що

[–] / [+] = [–]  1/ [+] = [–]  [–] = [–].

Розглянемо цю ситуацію на прикладі коефіцієнта варіації:

.

Отже, добуток двох характеристик з негативними інгредієнтами утворює нову характеристику, що також має негативний інгредієнт.

При побудові оцінки виду [+] / [–], маємо:

[+] / [-] = [+] · 1/ [-] = [+] · [+] = [+],

тобто добуток двох характеристик з позитивними інгредієнтами породжує нову характеристику, що також має позитивний інгредієнт.

Наприклад,

.

Більш складною є ситуація [+] / [+]. Дослідимо її. З одного боку:

,

з іншого:

Оскільки характеристики ([+] · [–]) та 1/([+] · [–]) мають протилежні інгредієнти, то отримане протиріччя вказує на невизначеність інгредієнта результуючої оцінки. А тому безпосереднє використання оцінок такого виду може призвести до неправильного результату при прийнятті рішень. Вихід з такої ситуації можна знайти лише при накладанні певних додаткових умов на характеристики, що є базовими при утворенні відносної оцінки.

При побудові оцінок виду [–] / [–] отримуємо:

тобто щодо інгредієнта відносних оцінок такого виду знову маємо невизначеність, а тому їх використання може призвести до суперечливого результату.

13.1.4 Коефіцієнти асиметрії та варіації асиметрії

У випадку асиметричного розподілу певних показників ефективності (ЧПВ) аналіз лише середньоквадратичного відхилення як міри ризику може бути недостатнім. Особливо коли ці значення співпадають для кількох альтернативних об’єктів (проектів). У цьому випадку слід аналізувати як показник ризику таку числову характеристику випадкової величини, як коефіцієнт асиметрії. Його обчислю­ють за формулою:

As(X) = ,

де As(X)коефіцієнт асиметрії. У випадку, коли в наявності є статистична інформація щодо показника ефективності Х, зібрана протягом T періодів, коефіцієнт асиметрії обчислюють за формулою:

As(X) = .

Якщо As(X) = 0, то графік функції щільності ймовірності для випадкової величини Х є симетричним відносно М(Х). Якщо розподіл ймовірностей є асиметричним, причому його «довга частина» («хвіст») розміщена праворуч від моди випадкової величини Мо(Х) (має правосторонній скіс, рис.13.1а), то зважена сума кубів додатних відхилень від М(Х) є більшою від суми кубів від’ємних відхилень.

Рисунок 13.1 – Функція щільності розподілу ймовірності у випадках додатного (а) та від’ємного (б) коефіцієнтів асиметрії

Тоді, з урахуванням того, що (Х)>0, отримуємо, що As(X)>0. Аналогічно отримуємо, що As(X)<0 у випадку, коли функція щільності має лівосторонній скіс (рис.13.1б) і «хвіст» розподілу виступає ліворуч.

Якщо Х=Х+, то за решти рівних умов серед m різних альтернативних об’єктів (проектів, стратегій) меншим ризиком обтяжений той об’єкт ( ), для якого виконується умова:

тобто As(X+) = As+(X+). Це пояснюється тим, що несприятливі відхилення від сподіваного значення з відносно великою ймовірністю розташовані для обраного об’єкта ліворуч найближче до сподіваного значення (менше відхиляються від нього в несприятливий бік) порівняно з іншими, а сприятливі значення значно віддалені від сподіваної величини (ці значення – «хвіст» – розташовані праворуч).

У зв’язку з цим можна вважати, що критерій максимальної асиметрії є критерієм, який забезпечує мінімальний ризик по відношенню до несприятливих відхилень від сподіваного результату (для задач максимізації показників ефективності).

Як міру ризику можна використовувати також величину :

Очевидно, що оцінка має негативний інгредієнт , а тому перевага надається тому об’єкту (проекту), для якого вона є мінімальною:

Для відносного вираження ризику з урахуванням As+(X+) можна використовувати коефіцієнт варіації асиметрії:

Очевидно, що CVAs(X+) = CVAs(X+), тобто перевага надається тому об’єкту (проекту), для якого CVAs(X+) приймає найменше значення:

Використання коефіцієнта асиметрії можливе і тоді, коли показники ефективності об’єкта (проекту) містять негативний інгредієнт, тобто (сподівані збитки, затрати). У цьому випадку більш ефективним рішенням будуть відповідати менші значення коефіцієнта асиметрії, а тому серед m альтернативних рішень оптимальним буде те, для якого

(у цій ситуації As(X) = As(X)).

Можна скористатись також критеріями:

Зауваження 13.1. Під час прийняття рішень критерії, які базуються на оцінках As(X) та As(X), слід використовувати тоді, коли M(Xi)=M(Xj); i, j = 1, ..., m або ж M(Xi)M(Xj). Оцінки CVAs(X) використовуються тоді, коли M(Xi)  M(Xj), i, j = 1, ..., m.

Приклад 13.3. Результати спостережень за нормами прибутку портфелів цінних паперів А і В протягом минулих п’яти періодів наведено в табл.13.4.

Таблиця 13.4

Період

Норма прибутку (%)

RA

RB

1

2

3

4

5

5

3

2

3

7

3

5

6

5

1

Інвестор має можливість придбати лише один з цих портфелів. Потрібно оцінити коефіцієнти асиметрії для норм прибутку портфелів цінних паперів і прийняти оптимальне рішення щодо інвестування.

Розв’язання. Для портфеля цінних паперів виду А маємо:

Для портфеля В:

Отже, виходячи з того, що As+(RA)>As+(RB), або

(RA)< (RB), або CVAs(RA)<CVAs(RB), приходимо до висновку, що менш ризикованим є портфель цінних паперів А і інвестиції слід робити в цей портфель.

Отриманий у цьому прикладі результат повністю узгоджується з висновком, зробленим у рішенні прикладу 13.2.

Приклад 13.4.

Результати спостережень за нормами прибутків портфелів цінних паперів А і В подано в табл.13.5.

Таблиця 13.5

Період

Норма прибутку (%)

RA

RB

1

5

3,6

2

3

6

3

2

7,2

4

3

6

5

7

1,2

Інвестор має можливість придбати лише один з цих портфелів цінних паперів. Використовуючи в якості міри ризику коефіцієнт варіації асиметрії, вибрати портфель цінних паперів, що обтяжений мінімальним ризиком.

Розв’язання. Для портфеля цінних паперів А маємо:

RA = ; M+(RA)=4; (RA) = 2; As+(RA) = 1,8;

(RA) = 0,357; CVAs(RA) = 0,089.

Для портфеля В:

RB = ; M+(RB) = 4,8;  (RB) = 2,4; As+(RB) = – 1,8;

(RB) = 2,8; CVAs(RB) = 0,583.

Оскільки M+(RA) < M+(RB), то в якості міри ризику доцільно використати коефіцієнт варіації асиметрії. Враховуючи, що

CVAs(RA) = 0,089 < 0,583 = CVAs(RB),

найменший ризик має портфель А.

Отриманий у цьому прикладі результат повністю узгоджується з висновком, зробленим у рішенні прикладу 13.2.