
- •Введение
- •Часть I
- •1. Простой и сложный процент
- •1.1. Простой процент
- •1.2. Сложный процент
- •1. 2. 1. Начисление процента один раз в год
- •1. 2. 2. Начисление процентов несколько раз в год
- •1. 2. 3. Непрерывное начисление процента
- •1.3. Эквивалентный и эффективный проценты
- •1.4. Эквивалентность непрерывно начисляемого процента и процента, начисляемого m раз в год
- •1.5. Комбинация простого и сложного процентов
- •2. Дисконтированная стоимость
- •3. Определение периода начисления процента
- •4. Определение будущей стоимости потока платежей
- •5.2. Приведенная стоимость аннуитета
- •5.2.1. Приведенная стоимость аннуитета при начислении процента один раз в год
- •5.2.2. Приведенная стоимость аннуитета при осуществлении выплат т раз в год.
- •5.2.3. Приведенная стоимость аннуитета при начислении процента т раз в год:
- •5.3. Вечная рента
- •5.4. Немедленный аннуитет
- •6. Доходность
- •6.1. Доходность за период
- •6.2. Доходность в расчете на год
- •6.3. Процентные ставки и инфляция
- •Задачи:
- •Часть II
- •1. Характеристика ценных бумаг
- •2. Определение курсовой стоимости и доходности облигаций
- •2.1. Определение курсовой стоимости купонной облигации
- •2.1.2. Определение курсовой стоимости среднесрочной и долгосрочной бескупонных облигаций
- •2.1.3. Определение курсовой стоимости гко
- •2.2. Определение доходности облигаций
- •2.2.1. Определение доходности купонной облигации
- •2.3.2. Определение реализованного процента
- •2.4. Определение цены и доходности облигации с учетом налоговых и комиссионных платежей
- •2.5. Дюрация
- •2.6. Изгиб
- •3. Определение курсовой стоимости и доходности акций
- •3.1. Определение курсовой стоимости акции
- •3.2. Определение доходности акции
- •4. Определение курсовой стоимости и доходности векселя
- •4.1. Дисконтный вексель
- •4.1.1. Определение дисконта и ставки дисконта
- •4.1.2. Определение цены векселя
- •4.1.3. Эквивалентная ставка дисконта, доходность векселя
- •4.2. Процентный вексель
- •4.2.1. Определение суммы начисленных процентов и вексельной суммы
- •4.2.2. Определение цены векселя
- •4.2.3. Определение доходности векселя
- •5. Определение курсовой стоимости и доходности банковских сертификатов
- •5.1. Определение суммы начисленных процентов и суммы погашения сертификата
- •5.2. Определение цены сертификата
- •5.3. Определение доходности сертификата
2. Определение курсовой стоимости и доходности облигаций
Определение курсовой стоимости ценных бумаг основано на принципе дисконтирования. Инвестор приобретает ценную бумагу, чтобы получать доходы, которые она приносит. Поэтому для ответа на вопрос, сколько сегодня должна стоить та или иная ценная бумага, необходимо определить дисконтированную стоимость всех доходов, которые она принесет.
Технику определения курсовой стоимости можно представить в три действия. 1) Определяем поток доходов, который ожидается по ценной бумаге. 2) Находим дисконтированную (сегодняшнюю) стоимость величины каждого платежа по бумаге. 3) Суммируем дисконтированные стоимости. Данная сумма и представляет собой курсовую стоимость ценной бумаги.
После того как мы привели общий принцип расчета курсовой стоимости, рассмотрим определение курса различных видов облигаций.
2.1. Определение курсовой стоимости купонной облигации
Формула определения цены облигации:
где: Р – цена облигации,
С–купон;
N–номинал;
n – число лет до погашения облигации;
r – доходность до погашения облигации.
В этой формуле важно отметить, что n – это количество лет, которые остаются до погашения бумаги. Например, облигация выпущена на 10 лет, однако 7 лет уже прошло. Определяя курсовую стоимость такой бумаги следует взять n равной трем. Это вытекает из принципа дисконтирования будущих доходов. В данном случае облигация принесет доходы инвестору только за три оставшиеся года.
В формуле определения цены облигации появилось такое понятие как доходность до погашения (или доходность к погашению). Доходность до погашения – это доходность в расчете на год, которую обеспечит себе инвестор, если, купив облигацию, продержит ее до погашения.
Наиболее важным моментом при расчете цены облигации является определение ставки дисконтирования. Она должна соответствовать уровню риска инвестиций. На практике ее можно взять, например, из котировок, брокерских компаний по облигациям с похожими характеристиками. Ее также можно попытаться определить аналитически, разложив ставку на составные части. Ставку дисконтирования можно представить следующим образом:
где: r– ставка дисконтирования,
rf – ставка без риска, т.е. ставка по инвестициям, для которых отсутствует риск; в качестве такой ставки берут доходность по государственным ценным бумагам для соответствующих сроков погашения,
l – премия за ликвидность,
I – темп инфляции,
re – реальная ставка процента.
Ставка без риска (rf) может учитывать инфляцию. Однако если инвестор полагает, что инфляция будет развиваться более высоким темпом, он также учтет это в ставке дисконтирования. Приобретая бумагу, инвестор сталкивается с риском ликвидности, который связан с тем, насколько быстро и по какой цене можно продать бумагу. Поэтому данная величина должна найти отражение в ставке дисконтирования.
Между курсовой стоимостью и доходностью до погашения облигации существуют следующие зависимости.
1) Цена облигации и доходность до погашения находятся в обратной связи. При повышении доходности цена облигации падает, при понижении – возрастает.
2) Если доходность до погашения выше купонного процента, облигация продается со скидкой.
3) Если доходность до погашения ниже купонного процента, облигация продается с премией.
4) Если доходность до погашения равна купонному проценту, цена облигации равна номиналу.
5) При понижении доходности до погашения на 1% цена облигации возрастает в большей степени в сравнении с ее падением при увеличении доходности до погашения на 1%.
Котировки облигаций приводятся в процентах к номинальной стоимости. Поэтому при определении курсовой стоимости облигации можно пользоваться не величинами в денежном выражении, а в процентах. В этом случае номинал принимается за 100%.
Купон по облигации может выплачиваться чаще, чем один раз в год. В таком случае формула примет вид:
где: m – частота выплаты купона в течение года.
Формулы можно привести к более удобному виду, учитывая тот факт, что выплата купонов представляет собой не что иное как аннуитет:
и
или
Приведенные формулы позволяют рассчитать чистую цену облигации, т.е. цену на основе целых купонных периодов. Однако бумаги продаются и покупаются также в ходе купонного периода. Поэтому следует ответить на вопрос, каким образом рассчитать полную цену облигации, т.е. цену, скорректированную на размер накопленных к моменту сделки суммы купонных процентов. Общий подход и в данном случае остается прежним, т.е. необходимо дисконтировать будущие доходы с учетом времени, которое остается до их получения.
Формула определения цены облигации, когда купон выплачивается один раз в год, имеет следующий вид:
где:
v=t/365
t – число дней с момента сделки до выплаты очередного купона;
n – целое число лет, которое остается до погашения облигации, включая текущий год.
Если купон выплачивается т раз в год, то число купонных периодов корректируется на т, как было показано выше, а в знаменателе формулы вместо 365 дней указывается число дней в купонном периоде.