
- •Введение
- •Часть I
- •1. Простой и сложный процент
- •1.1. Простой процент
- •1.2. Сложный процент
- •1. 2. 1. Начисление процента один раз в год
- •1. 2. 2. Начисление процентов несколько раз в год
- •1. 2. 3. Непрерывное начисление процента
- •1.3. Эквивалентный и эффективный проценты
- •1.4. Эквивалентность непрерывно начисляемого процента и процента, начисляемого m раз в год
- •1.5. Комбинация простого и сложного процентов
- •2. Дисконтированная стоимость
- •3. Определение периода начисления процента
- •4. Определение будущей стоимости потока платежей
- •5.2. Приведенная стоимость аннуитета
- •5.2.1. Приведенная стоимость аннуитета при начислении процента один раз в год
- •5.2.2. Приведенная стоимость аннуитета при осуществлении выплат т раз в год.
- •5.2.3. Приведенная стоимость аннуитета при начислении процента т раз в год:
- •5.3. Вечная рента
- •5.4. Немедленный аннуитет
- •6. Доходность
- •6.1. Доходность за период
- •6.2. Доходность в расчете на год
- •6.3. Процентные ставки и инфляция
- •Задачи:
- •Часть II
- •1. Характеристика ценных бумаг
- •2. Определение курсовой стоимости и доходности облигаций
- •2.1. Определение курсовой стоимости купонной облигации
- •2.1.2. Определение курсовой стоимости среднесрочной и долгосрочной бескупонных облигаций
- •2.1.3. Определение курсовой стоимости гко
- •2.2. Определение доходности облигаций
- •2.2.1. Определение доходности купонной облигации
- •2.3.2. Определение реализованного процента
- •2.4. Определение цены и доходности облигации с учетом налоговых и комиссионных платежей
- •2.5. Дюрация
- •2.6. Изгиб
- •3. Определение курсовой стоимости и доходности акций
- •3.1. Определение курсовой стоимости акции
- •3.2. Определение доходности акции
- •4. Определение курсовой стоимости и доходности векселя
- •4.1. Дисконтный вексель
- •4.1.1. Определение дисконта и ставки дисконта
- •4.1.2. Определение цены векселя
- •4.1.3. Эквивалентная ставка дисконта, доходность векселя
- •4.2. Процентный вексель
- •4.2.1. Определение суммы начисленных процентов и вексельной суммы
- •4.2.2. Определение цены векселя
- •4.2.3. Определение доходности векселя
- •5. Определение курсовой стоимости и доходности банковских сертификатов
- •5.1. Определение суммы начисленных процентов и суммы погашения сертификата
- •5.2. Определение цены сертификата
- •5.3. Определение доходности сертификата
1.3. Эквивалентный и эффективный проценты
В практике финансового рынка процент, начисляемый по активу, задают как простой процент в расчете на год. Однако если в рамках года по активу предусмотрено начисление сложного процента, то общий результат, который получит инвестор, будет выше декларируемого. Чтобы его определить необходимо рассчитать эффективный или реальный процент.
Эффективный (реальный) процент – это процент, который получается по итогам года при начислении сложного процента в рамках года.
Эффективный процент можно определить из следующего соотношения:
где: rэф – эффективный процент,
r – простой процент в расчете на год, который задан по условиям финансового инструмента.
Тогда:
Если известен эффективный процент, то по формуле, которая вытекает из формулы (11), можно определить эквивалентный ему простой процент в расчете на год:
1.4. Эквивалентность непрерывно начисляемого процента и процента, начисляемого m раз в год
В финансовых расчетах может возникнуть необходимость найти эквивалентность между непрерывно начисляемым процентом и процентом, начисляемым т раз в год. Например, в формулах определения курсовой стоимости опциона используется непрерывно начисляемый процент. В то же время на финансовом рынке инвесторы оперируют главным образом ставками, предполагающими начисление процента раз в год, полгода, квартал и месяц.
Эквивалентность между двумя видами процентов можно найти, приравняв суммы, получаемые с учетом непрерывно начисляемого процента и начисления процента т раз в год, а именно:
,
где: rn – непрерывно начисляемый процент
или
Отсюда
или
Процент r можно получить следующим образом:
1.5. Комбинация простого и сложного процентов
В ряде случаев возникает ситуация, когда начисление процентов включает и сложный, и простой проценты. Например, средства вкладчика находятся на счете в банке 5 лет и 2 месяца. Проценты капитализируются (т.е. присоединяются к основной сумме счета, на которую начисляется процент) в конце каждого года. В течение года начисляется простой процент. Для такого случая сумму, которую получит инвестор, можно рассчитать по следующей формуле:
где: Рn+t – сумма, которую получит инвестор за n лет и t дней;
Р – первоначально инвестированная сумма;
t – число дней, за которые начисляется простой процент;
r – процент, начисляемый в течение года.
В зависимости от того, когда вкладчик размещает средства на счете, простой процент может начисляться также в начале периода инвестирования средств или и в начале и в конце. Суммы, которые получит вкладчик, можно рассчитать соответственно с помощью следующих формул (капитализация процентов осуществляется ежегодно):
и
2. Дисконтированная стоимость
В финансовых расчетах возникает необходимость сравнивать между собой различные суммы денег в разные моменты времени. Например, какая величина больше: 100 тыс. руб. сегодня или 1 млн. руб. через пять лет. Дело в том, что сегодня инвестор может положить 100 тыс. руб. в банк и за пять лет они принесут ему некоторый процент. Если через пять лет 100 тыс. руб. на счете вкладчика превратятся в 1 млн. руб., то можно сказать, что 100 тысяч руб. сегодня и 1 млн. руб. через пять лет – это эквивалентные, т.е. равные во времени суммы. Если вкладчик получит больше 1 млн. руб., тогда 100 тыс. руб. сегодня «стоят» больше 1 млн. руб. через пять лет.
Чтобы сравнить суммы денег во времени, их необходимо привести к единому временному знаменателю. В практике финансовых расчетов принято приводить суммы средств, которые получит инвестор, к сегодняшнему дню, т.е. начальной точке отсчета. Данную задачу решают (при начислении сложного процента) с помощью следующей формулы:
Эта формула называется
формулой дисконтированной или приведенной
стоимости. Рn
– это будущая стоимость, Р – дисконтированная
или приведенная стоимость (в литературе
в качестве синонимов используют также
термины сегодняшняя, настоящая, текущая
стоимость).
– это коэффициент дисконтирования.
При начислении сложного процента т раз в год формула принимает вид:
,
а для непрерывно начисляемого процента:
Формулы дисконтированной стоимости для простого процента: