
- •Введение
- •Часть I
- •1. Простой и сложный процент
- •1.1. Простой процент
- •1.2. Сложный процент
- •1. 2. 1. Начисление процента один раз в год
- •1. 2. 2. Начисление процентов несколько раз в год
- •1. 2. 3. Непрерывное начисление процента
- •1.3. Эквивалентный и эффективный проценты
- •1.4. Эквивалентность непрерывно начисляемого процента и процента, начисляемого m раз в год
- •1.5. Комбинация простого и сложного процентов
- •2. Дисконтированная стоимость
- •3. Определение периода начисления процента
- •4. Определение будущей стоимости потока платежей
- •5.2. Приведенная стоимость аннуитета
- •5.2.1. Приведенная стоимость аннуитета при начислении процента один раз в год
- •5.2.2. Приведенная стоимость аннуитета при осуществлении выплат т раз в год.
- •5.2.3. Приведенная стоимость аннуитета при начислении процента т раз в год:
- •5.3. Вечная рента
- •5.4. Немедленный аннуитет
- •6. Доходность
- •6.1. Доходность за период
- •6.2. Доходность в расчете на год
- •6.3. Процентные ставки и инфляция
- •Задачи:
- •Часть II
- •1. Характеристика ценных бумаг
- •2. Определение курсовой стоимости и доходности облигаций
- •2.1. Определение курсовой стоимости купонной облигации
- •2.1.2. Определение курсовой стоимости среднесрочной и долгосрочной бескупонных облигаций
- •2.1.3. Определение курсовой стоимости гко
- •2.2. Определение доходности облигаций
- •2.2.1. Определение доходности купонной облигации
- •2.3.2. Определение реализованного процента
- •2.4. Определение цены и доходности облигации с учетом налоговых и комиссионных платежей
- •2.5. Дюрация
- •2.6. Изгиб
- •3. Определение курсовой стоимости и доходности акций
- •3.1. Определение курсовой стоимости акции
- •3.2. Определение доходности акции
- •4. Определение курсовой стоимости и доходности векселя
- •4.1. Дисконтный вексель
- •4.1.1. Определение дисконта и ставки дисконта
- •4.1.2. Определение цены векселя
- •4.1.3. Эквивалентная ставка дисконта, доходность векселя
- •4.2. Процентный вексель
- •4.2.1. Определение суммы начисленных процентов и вексельной суммы
- •4.2.2. Определение цены векселя
- •4.2.3. Определение доходности векселя
- •5. Определение курсовой стоимости и доходности банковских сертификатов
- •5.1. Определение суммы начисленных процентов и суммы погашения сертификата
- •5.2. Определение цены сертификата
- •5.3. Определение доходности сертификата
3.2. Определение доходности акции
Принимая решение купить акцию на определенный период времени, инвестору необходимо оценить доходность от его операции. Аналогичным образом, после завершения операции следует оценить ее фактическую доходность. Доходность операции с акцией, которая занимает несколько лет, можно ориентировочно определить по формуле:
где: r– доходность от операции с акцией;
РS – цена продажи акции;
РP – цена покупки акции;
Div – средний дивиденд за п лет (он определяется как среднее арифметическое);
п – число лет от покупки до продажи акции.
Если покупка и продажа акции происходят в рамках года, то доходность операции можно определить по формуле:
где: t – число дней с момента покупки до продажи акции. (Если за прошедший период времени дивиденд на акцию не выплачивался, то он исключается из формулы).
В приведенных выше формулах мы не учитывали ни налоговых платежей, ни комиссионных. Данную корректировку несложно сделать по аналогии с формулами для облигаций.
4. Определение курсовой стоимости и доходности векселя
4.1. Дисконтный вексель
4.1.1. Определение дисконта и ставки дисконта
Дисконтные векселя котируются на основе ставки дисконта. Она говорит о величине скидки, которую продавец предоставляет покупателю. Ставка дисконта указывается в процентах к номиналу векселя как простой процент в расчете на год. Ставку дисконта можно пересчитать в рублевый эквивалент с помощью формулы:
где: D – дисконт векселя;
N – номинал векселя;
d – ставка дисконта;
t – число дней с момента приобретения векселя до его погашения.
В знаменателе указывается 360 дней, поскольку расчеты с векселем осуществляются на базе финансового года равного 360 дням.
Ставка дисконта определяется по формуле:
4.1.2. Определение цены векселя
Цену векселя можно определить, вычтя из номинала величину скидки, а именно:
где: Р – цена векселя.
Если известна ставка дисконта, то цена определяется по формуле:
Если инвестор определил для себя значение доходности, которую бы он желал обеспечить по векселю, то цену бумаги можно вычислить по формуле:
где: r – доходность, которую желает обеспечить себе инвестор. (Если вкладчик сравнивает инвестиции в вексель с другими бумагами, для которых финансовый год равен 365 дням, то в формуле целесообразно в знаменателе ставить цифру 365).
4.1.3. Эквивалентная ставка дисконта, доходность векселя
Ставка дисконта представляет собой характеристику доходности векселя. Однако она не позволяет непосредственно сравнить доходность векселя с доходностью других ценных бумаг, так как, во-первых, она рассчитывается на базе 360 дней, и, во-вторых, при ее определении скидка относится к номиналу, тогда как реально покупатель инвестирует меньшую сумму, а именно, цену.
Данные обстоятельства занижают доходность векселя. Поэтому необходимо определить формулу для пересчета ставки дисконта в доходность на базе 365 дней и учета цены. Эквивалентная ставка доходности равна:
где: r– эквивалентная ставка доходности.
Если взять финансовый год равным 365 дням, то эквивалентную ставку также можно определить как:
4.2. Процентный вексель
4.2.1. Определение суммы начисленных процентов и вексельной суммы
По процентному векселю начисляются проценты по ставке, которая указывается в векселе. Сумму начисленных процентов можно определить по формуле:
где: I – сумма начисленных процентов;
N– номинал векселя;
С% – процентная ставка, начисляемая по векселю;
tS – количество дней от начала начисления процента до его погашения.
Общая сумма, которую держатель процентного векселя получит при его погашении, равна сумме начисленных процентов и номинала. Ее можно определить по формуле:
где: S – сумма процентов и номинала векселя.