Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
bestref-146742.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
428.03 Кб
Скачать
    1. Выбор муфт

Основной характеристикой для выбора муфт является номинальный вращающий момент Т, Нм, установленный стандартом.

Тр = КрТ2 Т , (103)

где Тр – расчётный момент

Т2 – момент на тихоходном валу, Т2 = 373, 5 Нм

Т – номинальный момент

Кр – коэффициент режима нагрузки, Кр = 2

Тр =2*373, 5 = 743 Нм

Т = 800 Нм

Тр Т

Выбираем муфту с торообразной оболочкой, где Т = 800 Нм. Угловая скорость ω, с-1 не более 170 с-1. Материал полумуфт – сталь ст3 (ГОСТ 380-88); материал упругой оболочки – резина с пределом прочности при разрыве не менее 10 Н/мм2

    1. 2.10 Смазывание смазывающего устройства

  1. Смазывание зубчатых зацеплений и подшипников применяют в целях защиты от коррозии, снижения коэффициента трения, уменьшение износа, отводов тепла и продуктов износа от трущихся поверхностей, снижения шума и вибрации.

  1. Способ смазывания зубчатого зацепления:

Для смазывания редукторов общего назначения применяют непрерывное смазывание жидким маслом картерным непроточным способом (окунанием). Этот способ применяют для зубчатых передач при окружных скоростях от 0,3 до 12, 5 м/с

  1. Выбор сорта масла:

При расчётном контактном напряжении в зубьях σн =268 Н/мм2 и фактической окружной скорости колёс = 1, 36 м/с выбираем масло И-Г-А-68,

где И – масло индустриальное

Г – для гидравлических систем

А – масло без присадок

68 – класс кинематической вязкости

Кинематическая вязкость при 400С, мм2/с (сСт) = 61…75

  1. Определение количества масла:

Для одноступенчатого редуктора при смазывании окунанием объём масляной ванны определяем из расчёта 0, 4…0, 8 л масла на 1 кВт передаваемой мощности. Отсюда следует, что для редуктора мощностью Р=2, 75 кВт объём масла равен от 1, 1 до 2, 2 л. Для крупного редуктора примем 1, 1 л

  1. Определение уровня масла:

В цилиндрическом редукторе при окунании в масляную ванну колеса m 0,25d2, (104)

где m – модуль зацепления

hm = (0, 1…0, 5) d1 при этом hmin = 2, 2 m (105)

hm = 0, 5*81 = 40, 5 мм

2 92, 5

Для данного редуктора уровень масла составляет y+hm = 40 мм+40, 5 мм = 80, 5 мм

  1. Контроль уровня масла

Уровень масла, находящегося в корпусе редуктора контролируем с помощью жезлового указателя, установленным в крышке редуктора

  1. Слив масла

При работе передач масло постепенно загрязняется продуктами износа деталей передач. С течением времени оно стареет, свойства его ухудшаются. Поэтому масло, налитое в корпус редуктора, периодически меняют. Для этих целей установлено сливное отверстие с пробкой и цилиндрической резьбой.

  1. Отдушины

При длительной работе связи с нагревом масла и воздуха повышается давление внутри корпуса, что приводит к просачиванию масла через уплотнения и стенки. Чтобы избежать этого, внутреннюю полость корпуса сообщают с внешней средой. Для этого устанавливаем ручку-отдушину.

2.11 Смазывание подшипников

В данном редукторе я применил смазывание пластичными материалами, т.к. окружная скорость 2 м/с. Полость подшипника, смазываемая пластичными материалами, закрыта с внутренней стороны подшипникого узла резиновым манжетом. Для подшипников принимаем пластичную смазку типа солидол жировой (ГОСТ 1033-79), консталин жировой УТ – 1 (ГОСТ 1957-73).

    1. 2.12 Проверочный расчёт шпонок

Призматические шпонки, применяемые в проектированном редукторе, проверяют на смятие. Проверке подлежат две шпонки тихоходного вала – под колесом и полумуфтой, и одна шпонка на быстроходном валу под элементом открытой передачи.

Условие прочности шпонок.

σсм = Ft/Acм , (106)

где Ft – окружная сила на тихоходном валу

Acм = (0, 94h – t1)lp – площадь смятия. Здесь lp = l – b – рабочая длина шпонки со скруглёнными торцами (l –полная длина шпонки, определённая по конструктивной компоновки), b, h, t1 – стандартные размеры.

см] – допустимое напряжение на смятие

см] = 110/2 = 55 Н/мм2 – для чугунной ступицы

Условие прочности шпонок на тихоходном валу.

Под колесо выбираем шпонку длиной l = 56 мм, сечением шпонки b = 20 мм, h = 12 мм. Глубина паза ступицы t2 = 4, 9 мм lp =56-20 = 36 мм

Acм =(0, 94*12 – 4, 9)*36 = 229, 68

σсм =2018/229, 68 = 8, 78 Н/мм2

σсм см]

Под полумуфту выбираем шпонку длиной l =36 мм, сечением b =14 мм, h = 9мм. Глубина паза ступицы t1 = 5, 5 мм lp =36 - 9 = 27 мм

см] = 110 – 20% = 88 Н/мм2

Acм = (0, 94*9 – 5, 5)*27 = 79, 92

σсм =2018/79, 92 = 25, 25 Н/мм2

σсм см]

Условие прочности шпонки на быстроходном валу.

Под элемент открытой передачи (шкив) выбираем шпонку длиной l =22 мм, сечением b =10 мм, h = 8мм. Глубина паза ступицы t1 = 5 мм lp =22-10 = 12 мм

Acм = (0, 94*8 – 5)*12 = 30, 24

σсм =2018 / 30, 24 = 66, 74 Н/мм2

σсм см]

см] =88 Н/мм2

    1. 2.13 Проверочный расчёт стяжных винтов подшипниковых узлов

Проверить прочность стяжных винтов подшипниковых узлов тихоходного вала цилиндрического редуктора.

Максимальная реакция в вертикальной плоскости опоры подшипника Rс = 2792, 28 Н. Диаметр винта d2 = 12 мм, шаг резьбы Р = 1, 75 мм. Класс прочности 5.6 из стали 30

Определяем силу, приходящуюся на один винт

FB = Rс/2 (107)

FB =2792, 28/2 = 1396, 14 Н

Принимаем Кз =1, 5 (постоянная нагрузка), Х=0, 45 (для металлических деталей с упругими прокладками)

Определяем механические характеристики материала винтов:

предел прочности σв = 500 Н/мм2

предел текучести σт = 300 Н/мм2

допустимое напряжение [σ] = 0, 25 σт =0, 25*300 = 75 Н/мм2

Определяем расчётную силу затяжки винтов:

Fр = [Кз(1-x)+x] FB = [1, 5(1-0, 45)+0, 45]*1396, 14 = 1780, 08 Н

Определяем площадь опасного сечения винта

А = dР2 / 4 = ( d2 – 0, 94 Р)2 / 4, (108)

где dР ~ d2 – 0, 94 Р – расчётный диаметр винта

d2 – наружный диаметр винта, d2 = 12 мм

Р – шаг резьбы, Р = 1, 75 мм

А = 3, 14(12 – 0, 94*1, 75)2 / 4 = 84, 2 мм2

Определяем эквивалентные напряжения

σэкв = 1, 3 Fр / А (109)

σэкв = 1, 3 *1780, 08 / 84, 2 = 27, 48 Н/мм2 [σ]

27, 48 75

Проверить прочность стяжных винтов подшипниковых узлов быстроходного вала цилиндрического редуктора.

Rу – большая из реакций в вертикальной плоскости в опорах подшипников быстроходного вала, Rу = 2256, 08 Н. Диаметр винта d2 = 12 мм, шаг резьбы Р = 1, 75 мм. Класс прочности 5.6 из стали 30.

Определяем силу, приходящуюся на один винт

Fв = Rу / 2 (110)

Fв = 2256, 08 / 2 = 1128, 04Н

Принимаем Кз =1, 5 (постоянная нагрузка), Х=0, 45 (для металлических деталей с упругими прокладками).

Определяем механические характеристики материала винтов:

предел прочности σв = 500 Н/мм2

предел текучести σт = 300 Н/мм2

допустимое напряжение [σ] = 0, 25 σт =0, 25*300 = 75 Н/мм2

Определяем расчётную силу затяжки винтов:

Fр = [Кз(1-x)+x] FB = [1, 5(1-0, 45)+0, 45]*1128, 04 = 1438, 25 Н

Определяем площадь опасного сечения винта

А = dР2 / 4 = ( d2 – 0, 94 Р)2 / 4,

А = 3, 14(12 – 0, 94*1, 75)2 / 4 = 84, 2 мм2

Определяем эквивалентные напряжения

σэкв = 1, 3 Fр / А

σэкв = 1, 3 *1438, 25 / 84, 2 = 22, 25 Н/мм2 [σ]

27, 48 75

    1. 2.14 Проверочный расчёт валов

Для тихоходного вала:

Определяем напряжения в опасных сечениях вала по нормальным напряжениям.

σа = σи = М*103 / Wнетто, (111)

где М – суммарный изгибающий момент в сечении под колесом, М3 = 187, 52 Нм, тихоход. 2 и 3 ступенью М2 = 303 Нм

Wнетто – осевой момент сопротивления сечения вала

Под буртик Wнетто = 0, 1d3 = 0, 1 *553 = 16637, 5 мм3

Под колесом Wнетто =0, 1а3 – bt1(d – t1)/2a = 16637, 5 – 12*7, 5(55 – 7, 3)2/110 = 14791, 5 мм3

σа = σи = 187, 52*103/14791, 5 = 12, 68 Н/мм2 – под колесом

σа = σи =303*103 / 16637, 58 = 18, 21 Н/мм2 – под буртик

Определяем коэффициент концентрации нормальных напряжений для расчётного сечения вала под буртик и под колесо.

Б)D = (KБ/Kd + KF – 1) 1/ Ky, (112)

где КБ – эффективный коэффициент концентрации напряжений, КБ = 1, 8 – для ступенчатого перехода

КБ =2, 15 – для шпоночного паза

KF –коэффициент влияния шероховатости. Для ступени под колесо выполняют обточку KF = 1, 5. Для ступени под буртик шлифования KF = 1,0

Kd – коэффициент влияния абсолютных размеров поперечного сечения, Kd = 0, 70 – под буртик. Kd = 0, 67 – под колесом

Ky – коэффициент влияния поверхностного упрочнения, Ky = 1, 5

Б)D = (1, 8/0,7 + 1-1) 1/1, 5 = 1, 71 – под буртик

Б)D = (2, 15/0, 67 +1, 5 – 1)1/1, 5 = 2, 47 – под шпоночный паз

Определим пределы выносливости в расчётном сечении под буртиком вала и под колесом.

-1) D = σ-1 / (КБ)D , (113)

где σ-1 – предел выносливости, σ-1 = 410 Н/мм2

-1) D =410 /1, 71 = 239, 76 Н/мм2 – под буртик вала

-1) D =410 /2, 47 = 165, 99 Н/мм2 – под колесом

Определим коэффициент запаса прочности:

Sσ =(σ-1) D / σа (114)

Sσ =239, 76 / 18, 22 = 13, 16 – под буртик

Sσ =165, 99 / 12, 68 = 13, 09 – под колесом

Определим напряжения по касательным:

а = Мк*103 / 2 W Рнетто (115)

W Рнетто = 0, 2 d3 = 0,*553 = 33275 мм3

М3 = 187, 52 Нм

М2 = 303 Нм

а =187, 52*103 / 33275 = 2, 82 Н/мм2 – под колесом

а =303*103 / 2*33275 = 4, 55 Н/мм2 – под буртиком

Определим коэффициент концентрации касательных напряжений для сечения вала.

(К )D = (К / К D + KF – 1) 1/ Ky (116)

К = 1, 55 – под буртик

К = 2, 0 – под колесо

KF = 1, 5 – под колесо

KF = 1, 0 – под буртик

К D = 0, 70 – под буртик

К D = 0, 67 – под колесо

Ky = 1, 5

(К )D = (1, 55/0, 70 +1-1)1/1, 5 = 1, 47 – под буртик

(К )D = (2, 0/0, 67 +1, 5 – 1)1/1, 5 = 2, 32 – под колесо

Определим пределы выносливости:

( -1) D = -1 / (К )D, (117)

где -1 = 0, 58*410 = 237, 8

( -1) D =237, 8/ 1, 47 = 161, 76 Н/мм2 – под буртик

( -1) D =237, 8/2, 32 = 102, 5 Н/мм2 – под колесо

Определим коэффициент запаса прочности по касательным напряжениям:

S =( -1) D / а = 161, 76/4, 55 = 35, 55 – под буртик

S =102, 5/2, 82 = 36, 34 – под колесом

Определим общий коэффициент запаса прочности в опасном сечении:

S = Sσ S / Sσ2 + S 2 [S] (118)

где [S] = 1, 4

S= 13, 16*35, 55/ 13, 162*35, 552=12, 34>1, 4 – под буртик

S= 13, 09*36, 34 / 13, 092 +36, 342 = 12, 31>1, 4 – под колесом

Для быстроходного вала

Определим напряжения в опасных сечениях вала по нормальным напряжениям:

σа = σи = М*103 / Wнетто,

где Wнетто = 0, 1d3 = 0, 1 *403 = 6400 мм3 – осевой момент сопротивления сечения вала

Под буртик

Wнетто = 0, 1d3 = 0, 1 *553 = 16637, 5 мм3

Под шестерню

Wнетто = d3 f1 / 32 = 3, 14*763 /32 = 43074, 52 мм3

σа = σи = 74, 34*103/6400 = 11, 61 Н/мм2 – под буртик

σа = σи =73, 46*103 / 43074, 52= 1, 71 Н/мм2 – под шестерню

Определим напряжения по касательным:

а = Мк*103 / 2 W Рнетто

W Рнетто = 0, 2 d3 = 0,*403 = 12800 мм3 – под буртик

W Рнетто = d3 f1 / 16 = 3, 14*763 /16 = 81149, 04 мм3 – под шестерню

а =81, 73*103 / 2*12800 = 3, 19 Н/мм2 – под буртиком

а =81730 / 2*81149, 04 = 0,51 Н/мм2 – под колесом

Определим коэффициент концентрации и нормальных касательных напряжений для сечения вала.

(К )D = (К / К D + KF – 1) 1/ Ky – по нормальным

где К = 1, 8 – под буртик

К = 1, 7 – под колесо

KF = 1, 5 – под колесо

KF = 1, 0 – под буртик

К D = 0, 73 – под буртик

К D = 0, 67 – под колесо

Ky = 1, 4 – для всех участков

(К )D = (1, 8/0, 73 +1, 5-1)1/1, 4 = 2, 12 – под буртик

(К )D = (1, 7/0, 67 +1 – 1)1/1, 4 = 1, 81 – под колесо

(К )D = (К / К D + KF – 1) 1/ Ky , – по касательным

где К = 1, 45 – под буртик

К = 1, 55 – под шестерню

К D = 0, 73 – под буртик

К D = 0, 67 – под колесо

KF = 1, 5 – под буртик

KF = 1, 0 – под шестерню

Ky = 1, 4 – для всех сечений

(К )D =(1, 45/0, 73 +1, 5-1)1/1, 4 = 1, 78 – под буртик

(К )D =(1, 55/0, 67 +1 – 1)1/1, 4 = 1, 65 – под колесо

Определим пределы выносливости:

-1) D = σ-1 / (КБ)D - по нормальным

-1) D =410 /2, 12 = 193, 39 Н/мм2 – под буртик вала

-1) D =410 /1, 81 = 226, 52 Н/мм2 – под колесом

( -1) D = -1 / (К )D – по касательным

где -1 = 0, 58*410 = 237, 8 Н/мм2

( -1) D =237, 8/ 1, 78 = 133, 59 Н/мм2 – под буртик

( -1) D =237, 8/1, 65 = 144, 12 Н/мм2 – под колесо

Определим коэффициент запаса прочности:

Sσ =(σ-1) D / σа – по нормальным напряжениям

Sσ =193, 39 / 11, 61 = 16, 66 – под буртик

Sσ =226, 52 / 1, 71 = 132, 46 – под колесом

S =( -1) D / а – по касательным

S = 133, 59/3, 19 = 41, 87 – под буртик

S =144, 12/0, 51 = 282, 59 – под колесом

Определим общий коэффициент запаса прочности в опасном сечении:

S = Sσ S / Sσ2 + S 2 [S]

где [S] = 2, 1

S= 16, 66*41, 87/ 16, 662 + 41, 872=15, 48>1, 4 – под буртик

S= 132, 46*282, 59 / 132, 462 +282, 592 = 119, 93>1, 4 – под колесом

Таблица 11

Детали

Напряжения, Н/мм2

Валы (опасные сечения

Коэффициент запаса прочности

Расчётное, σ

Допускаемое, [σ]

Расчётный, S

допускаемый, [S]

Шпонки

Быстр.вал

66, 74

88

Быстроходный

15, 48

2, 1

119, 93

Тихоход. вал

8, 78

55

Тихоходный

12, 34

1, 4

25, 25

12, 31

Стяжные винты

27, 48

75

    1. 2.15 Расчёт технического уровня редуктора

Определение массы редуктора

m =V*10-9 (119)

где -коэффициент заполнения, который зависит от межосевого расстояния аw, =0. 38

-плотность чугуна =7.4*103, кг/м3

V – условный объем редуктора

V=L*B*H (120)

где L-длина редуктора, L = 470 мм

B- ширина редуктора, B = 390 мм

H- высота редуктора, H = 120 мм

V=470*390*120=21196*103 мм3

m=0. 38*7.4*103 *21996000*10-9=61, 85 кг

Определение критерия технического уровня редуктора

Критерий технического уровня определяется по формуле

=m/T2 ,

где T2 - вращающий момент на тихоходном валу T2 = 373, 5 Нм

=61, 85*373, 5 = 0, 17

Данный редуктор по качественной оценке технического уровня оценивается как: средний; в большинстве случаев производства экономически неоправданно.

Таблица 12

Тип редуктора

Масса m, кг

Момент Т2, Н*м

Критерий 

Вывод

Цилиндрический одноступенчатый с вертикальными валами

61, 85

373, 54

0.17

Средний, в большинстве случаев производства экономически неоправданно

Список используемой литературы

1 А.Е. Шейнблин: «Курсовое проектирование деталей машин». Калининград «Янтарный сказ» 1999.

2 С.А. Чернавский: «Курсовое проектирование деталей машин». Москва «Машиностроение» 1988.

2

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]